Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Assess Radioactivity in the Ocean from Japan Nuclear Power Facility

12.12.2011
New study analyzes radioactivity from facility in first months after accident

With current news of additional radioactive leaks from the Fukushima nuclear power plants, the impact on the ocean of releases of radioactivity from the plants remains unclear.

But a new study by U.S. and Japanese researchers analyzes the levels of radioactivity discharged in the first four months after the accident.

It draws some basic conclusions about the history of contaminant releases to the ocean.

The study was conducted by Woods Hole Oceanographic Institution chemist Ken Buesseler and two colleagues based in Japan, Michio Aoyama of the Meteorological Research Institute and Masao Fukasawa of the Japan Agency for Marine-Earth Science and Technology.

They report that discharges from the Fukushima Dai-Ichi nuclear power plants peaked one month after the March 11 earthquake and tsunami that precipitated the nuclear accident, and continued through at least July.

Their study finds that the levels of radioactivity, while high, are not a direct threat to humans or marine life, but cautions that the effect of accumulated radionuclides in marine sediments is poorly known.

The release of radioactivity from Fukushima--both as atmospheric fallout and direct discharges to the ocean--represents the largest accidental release of radiation to the ocean in history.

Concentrations of cesium-137, a radioactive isotope with a 30-year half-life, at the plants' discharge points to the ocean peaked at more than 50 million times normal/previous levels.

Concentrations 18 miles offshore were higher than those measured in the ocean after the Chernobyl accident 25 years ago.

This is largely related to the fact, says Buesseler, that the Fukushima nuclear power plants are located along the coast, whereas Chernobyl was several hundred miles from the nearest salt water basins, the Baltic and Black Seas.

However, due to ocean mixing processes, the levels are rapidly diluted off the northwest coast of Japan.

The study used data on the concentrations of cesium-137, cesium-134 and iodine-131 as a basis to compare the levels of radionuclides released into the ocean with known levels in the sea surrounding Japan prior to the accident.

The resulting paper, Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity, is published in the current issue of the journal Environmental Science & Technology.

Buesseler was awarded a rapid-response grant from the National Science Foundation's (NSF) Division of Ocean Sciences to establish baseline concentrations of radionuclides in the Atlantic and Pacific Oceans.

"Understanding and management of the long-term geochemical fate and ecological consequences of radiochemical contamination of the sea is dependent on our knowledge of the initial conditions," says Don Rice, director of NSF's Chemical Oceanography Program. "Acquiring that knowledge depends on our ability to deploy experts to the scene with minimal delay."

The investigators compiled and analyzed data on concentrations of cesium and iodine in ocean water near the plants' discharge points.

The data were made public by TEPCO, the electric utility that owns the plants, and the Japanese Ministry of Culture, Sports, Science and Technology.

The team found that releases to the ocean peaked in April, a fact they attribute to "the complicated pattern of discharge of seawater and freshwater used to cool the reactors and spent fuel rods, interactions with groundwater, and intentional and unintentional releases of mixed radioactive material from the reactor facility."

The scientists also found that the releases decreased in May by a factor of 1,000, "a consequence of ocean mixing and a primary radionuclide source that had dramatically abated," they report.

While concentrations of some radionuclides continued to decrease, by July they were still 10,000 times higher than levels measured in 2010 off the coast of Japan.

This indicates that the plants "remain a significant source of contamination to the coastal waters off Japan," the researchers report.

"There is currently no data that allow us to distinguish between several possible sources of continued releases," says Buesseler.

"These most likely include some combination of direct releases from the reactors, or storage tanks or indirect releases from groundwater beneath the reactors or coastal sediments, both of which are likely contaminated from the period of maximum releases."

Buesseler says that at levels indicated by these data, the releases are not likely to be a direct threat to humans or marine biota in the surrounding ocean waters.

There could be an issue, however, if the source remains high and radiation accumulates in marine sediments.

"We don't know how this might affect benthic marine life, and with a half-life of 30 years, any cesium-137 accumulating in sediments or groundwater could be a concern for decades to come," he says.

While international collaborations for comprehensive field measurements to determine the full range of radioactive isotopes released are underway, says Buesseler, it will take some time before results are available to fully evaluate the impacts of this accident on the ocean.

The Gordon and Betty Moore Foundation also funded the research.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Stephanie Murphy, WHOI (508) 289-3340 samurphy@whoi.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=122542&org=NSF&from=news

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>