Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Assess Radioactivity in the Ocean from Japan Nuclear Power Facility

New study analyzes radioactivity from facility in first months after accident

With current news of additional radioactive leaks from the Fukushima nuclear power plants, the impact on the ocean of releases of radioactivity from the plants remains unclear.

But a new study by U.S. and Japanese researchers analyzes the levels of radioactivity discharged in the first four months after the accident.

It draws some basic conclusions about the history of contaminant releases to the ocean.

The study was conducted by Woods Hole Oceanographic Institution chemist Ken Buesseler and two colleagues based in Japan, Michio Aoyama of the Meteorological Research Institute and Masao Fukasawa of the Japan Agency for Marine-Earth Science and Technology.

They report that discharges from the Fukushima Dai-Ichi nuclear power plants peaked one month after the March 11 earthquake and tsunami that precipitated the nuclear accident, and continued through at least July.

Their study finds that the levels of radioactivity, while high, are not a direct threat to humans or marine life, but cautions that the effect of accumulated radionuclides in marine sediments is poorly known.

The release of radioactivity from Fukushima--both as atmospheric fallout and direct discharges to the ocean--represents the largest accidental release of radiation to the ocean in history.

Concentrations of cesium-137, a radioactive isotope with a 30-year half-life, at the plants' discharge points to the ocean peaked at more than 50 million times normal/previous levels.

Concentrations 18 miles offshore were higher than those measured in the ocean after the Chernobyl accident 25 years ago.

This is largely related to the fact, says Buesseler, that the Fukushima nuclear power plants are located along the coast, whereas Chernobyl was several hundred miles from the nearest salt water basins, the Baltic and Black Seas.

However, due to ocean mixing processes, the levels are rapidly diluted off the northwest coast of Japan.

The study used data on the concentrations of cesium-137, cesium-134 and iodine-131 as a basis to compare the levels of radionuclides released into the ocean with known levels in the sea surrounding Japan prior to the accident.

The resulting paper, Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity, is published in the current issue of the journal Environmental Science & Technology.

Buesseler was awarded a rapid-response grant from the National Science Foundation's (NSF) Division of Ocean Sciences to establish baseline concentrations of radionuclides in the Atlantic and Pacific Oceans.

"Understanding and management of the long-term geochemical fate and ecological consequences of radiochemical contamination of the sea is dependent on our knowledge of the initial conditions," says Don Rice, director of NSF's Chemical Oceanography Program. "Acquiring that knowledge depends on our ability to deploy experts to the scene with minimal delay."

The investigators compiled and analyzed data on concentrations of cesium and iodine in ocean water near the plants' discharge points.

The data were made public by TEPCO, the electric utility that owns the plants, and the Japanese Ministry of Culture, Sports, Science and Technology.

The team found that releases to the ocean peaked in April, a fact they attribute to "the complicated pattern of discharge of seawater and freshwater used to cool the reactors and spent fuel rods, interactions with groundwater, and intentional and unintentional releases of mixed radioactive material from the reactor facility."

The scientists also found that the releases decreased in May by a factor of 1,000, "a consequence of ocean mixing and a primary radionuclide source that had dramatically abated," they report.

While concentrations of some radionuclides continued to decrease, by July they were still 10,000 times higher than levels measured in 2010 off the coast of Japan.

This indicates that the plants "remain a significant source of contamination to the coastal waters off Japan," the researchers report.

"There is currently no data that allow us to distinguish between several possible sources of continued releases," says Buesseler.

"These most likely include some combination of direct releases from the reactors, or storage tanks or indirect releases from groundwater beneath the reactors or coastal sediments, both of which are likely contaminated from the period of maximum releases."

Buesseler says that at levels indicated by these data, the releases are not likely to be a direct threat to humans or marine biota in the surrounding ocean waters.

There could be an issue, however, if the source remains high and radiation accumulates in marine sediments.

"We don't know how this might affect benthic marine life, and with a half-life of 30 years, any cesium-137 accumulating in sediments or groundwater could be a concern for decades to come," he says.

While international collaborations for comprehensive field measurements to determine the full range of radioactive isotopes released are underway, says Buesseler, it will take some time before results are available to fully evaluate the impacts of this accident on the ocean.

The Gordon and Betty Moore Foundation also funded the research.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
Stephanie Murphy, WHOI (508) 289-3340
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>