Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist models the mysterious travels of greenhouse gas

17.02.2009
The global travel logs of greenhouse gases are based on atmospheric sampling locations sprinkled over the Earth and short towers that measure the uptake or release of carbon from a small patch of forest. But those measurements don't agree with current computer models of how plants and soils behave.

A University of Michigan researcher is developing a unique way to reconcile these crucial data.

"If we're going to adapt to climate change, we need to be able to predict what the climate will be," said Anna Michalak, assistant professor in the Department of Civil and Environmental Engineering and the Department of Atmospheric, Oceanic and Space Sciences. "We want to know how the sources and sinks of carbon will evolve in the future, and the only way we can manage climate change is with scientific information."

Michalak is discussing the work at the symposium "Improving Understanding of Carbon Flux Variability Using Atmospheric Inverse Modeling" Sunday at the American Association for the Advancement of Science annual meeting here. She co-organized the session, "The Carbon Budget: Can We Reconcile Flux Estimates?" with Joyce Penner, a professor in the Department of Atmospheric, Oceanic and Space Sciences.

For some 50 years, scientists have measured the amount of carbon dioxide in the air on a large scale, at an increasing number of locations sprinkled across the globe, and by sampling very small areas. Together with inventories of fossil fuel use, that's given good data about how much carbon is being pumped into the atmosphere---currently approximately 8 billion tons a year.

It's also known that half of that stays in the atmosphere. The rest comes to rest in the oceans, the earth, or is gobbled up by plants during photosynthesis.

But then the data gets harder to come by and scientists have had to make some assumptions. Those flux towers only cover a few places on Earth, and it's too cumbersome to collect data on small areas. Even a powerful new tool Michalak will be using---NASA's Orbiting Carbon Observatory (OCO), a satellite designed to monitor atmospheric carbon---does not paint a perfect picture. She compares the thin data strips it harvests with wrapping a basketball with floss.

The problem: Michalak said the data takes such a big-picture approach that it is difficult to isolate carbon being emitted or taken up in specific regions, or even countries. Scientists are left with an understanding of carbon sources that isn't nimble enough to understand the variability, or to be confident about predicting the future.

Michalak has developed a robust way to use available data to understand this variability called "geostatistical inverse modeling." This method breaks the globe into small regions and examines how much CO2 must have been emitted in each region to achieve the concentrations measured at atmospheric sample points. This method also allows her and her collaborators to use information from other existing satellites that measure the Earth's surface to supplement the information from the atmospheric monitoring network. Eventually, this method aims to trace the carbon levels at each sample point to a particular source or sink on the surface.

The technique, Michalak says, is like figuring out where the cream was originally poured in a cup of half-stirred coffee.

"Winds and weather patterns mix CO2 in the atmosphere just like stirring mixes cream in a cup of coffee," she said. "As soon as you start stirring, you lose some information about where and when the cream was originally added to the cup. With careful measurements and models, however, much of this information can be recovered."

"One of our big questions is how carbon sources and sinks evolve," Michalak said. "This is all with an eye on prediction and management."

Sue Nichols | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>