Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Helps Confirm Link between Fungus and Bat Epidemic

08.11.2011
Bats in North America are under attack. Since 2006, more than a million have been killed. Little has been done to save them, because there has not been enough evidence to implicate the suspect—until now.

A study has discovered that the fungus Geomyces destructans is the causal agent of White-nose Syndrome (WNS), the fungal disease decimating the bat population.

The study is coauthored by Justin Boyles, a post-doctoral research associate in ecology and evolutionary biology at the University of Tennessee, Knoxville, and a team led by David Blehert at the U.S. Geological Survey (USGS) National Wildlife Health Center together with Jeffrey Lorch, a graduate student at the University of Wisconsin, Madison. WNS is dubbed so because affected bats develop halos of white fungus around their muzzles. The symptoms of WNS include loss of body fat, unusual winter behavior, lesions to the wing membranes, and death.

The findings are published in the latest edition of Nature.

G. destructans has been thought to be the likely culprit, because the skin lesions characteristic of the disease are associated with colonization of the fungus. Still, the role of G. destructans in WNS has remained controversial, because evidence proving the fungus as the primary cause of the disease was lacking.

"Many assumed that fungal infections in mammals only occur if some other pathogen has already weakened the immune system," said Boyles. "Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats in Europe with no major die-offs generated speculation that other unidentified factors are the primary cause of WNS."

To put the speculation to rest, the researchers set up an experiment to see if G. destructans causes WNS. They housed healthy little brown bats in a laboratory under hibernation conditions and treated them with G. destructans. Exposure to the fungus caused WNS in the healthy bats. They also found that WNS can be transmitted from infected bats to healthy bats through direct contact.

"This information can be very useful to managers in their efforts to contain the spread of the disease," said Boyles. "These results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America suggests the fungus is new to the continent and the bats here have not developed immunity to the disease."

The researchers are hopeful the findings will allow land managers and reseachers to focus efforts on solutions that may slow the spread of the fungus to new bat populations.

"By illustrating that the fungus causes WNS, we are taking an instrumental step in clarifying how this disease develops and how to control it," said Boyles. "We hope our findings are useful in guiding management actions to preserve bat populations against this novel and devastating threat."

Boyles collaborated with Blehert, Lorch, Carol Meteyer and Anne Ballmann from the National Wildlife Health Center at the USGS in Madison, Wisc.; Melissa Behr at the Wisconsin Veterinary Diagnostic Laboratory in Madison, Wisc.; Paul Cryan from the Fort Collins Science Center at USGS in Fort Collins, Colo.; Alan Hicks from the New York Department of Environmental Conservation in Albany, N.Y.; Jeremy Coleman from the U.S. Fish and Wildlife Service in Hadley, Mass.; David Redell from the Wisconsin Department of Natural Resources in Madison, Wisc.; and DeeAnn Reeder from Bucknell University in Lewisburg, Pa.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>