Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist to Create Global Maps of CO2 Using Orbiting Carbon Observatory Data

30.01.2009
The first global maps of atmospheric carbon dioxide levels based on data from NASA's Orbiting Carbon Observatory will be created by a University of Michigan researcher and her colleagues.

The team will use sophisticated mathematical techniques to fill information gaps between the satellite's direct measurements, the closest of which will be 93 miles apart at the equator.

Leading the carbon cartographers is Anna Michalak, an assistant professor in the Department of Civil and Environmental Engineering and the Department of Atmospheric, Oceanic and Space Sciences.

OCO is scheduled to launch Feb. 23. As the first NASA satellite designed exclusively to study carbon dioxide, OCO's data, along with Michalak's maps, will provide unprecedented detail about this greenhouse gas in the atmosphere.

OCO will clarify how levels of carbon dioxide fluctuate across continents, oceans, and seasons. It will work to identify the sources and sinks of carbon across the globe. Natural sinks are places that soak up CO2, such as plants and some areas of the oceans. Understanding the Earth's natural uptakes and emissions of carbon is critical to predicting the planet's future climate.

Michalak and her colleagues' work will involve filling the information gaps between the OCO's measurement points without introducing assumptions that could obscure the results.

"Our job is really to understand the information content of the data and milk it for all it's worth, without pretending to know things we don't," Michalak said.

OCO will orbit from pole to pole, taking advantage of Earth's rotation to maximize its coverage. Each day, it will capture data from approximately 16 strips of the globe, each 10 kilometers, or 6.2 miles, wide. Every 16 days, it will return to the same place, Michalak said.

"While the OCO can measure the concentrations of carbon in the atmosphere with unprecedented detail, it can't look everywhere," she said. "Even after 16 days, the closest measured strips will be 150 kilometers apart at the equator. Also, OCO cannot see through clouds and atmospheric aerosols. Most of the world will not be directly measured."

Michalak and her colleagues will use sophisticated geostatistical modeling tools to interpolate information about the places in between OCO's measurements. An important part of their process involves using OCO data to determine how much carbon dioxide levels fluctuate across the globe. Knowing this variability will help them paint their full picture.

The scientists' tools will also tell them how certain they can be of how accurate their gap fills are in different parts of the planet.

The finished carbon maps could help solve an enduring mystery. Levels of carbon dioxide in the air have steadily increased since the Industrial Revolution. But remarkably, these atmospheric concentrations have not spiked as dramatically as emissions.

While humans emit about 8 billion tons of carbon into the atmosphere each year by burning fossil fuels, only about 4 billion tons end up in the air. Oceans likely sequester 2 billion tons of what's missing. But that leaves 2 billion tons---25 percent---of the carbon humans emit into the atmosphere unaccounted for.

Plants are likely taking it up, Michalak says, but scientists don't know exactly where or why. Answers to such questions would help scientists predict how the carbon cycle will evolve. Studies have demonstrated that plants exposed to additional CO2 take up more of it and grow faster for a time. But then they revert to their previous behavior.

"Fundamentally, what we're trying to do is understand why and how and when and where plants and oceans are taking up carbon so that we can predict how this will change in the future. Once we have the ability to predict what happens in the future, this will allow us to design strategies for better carbon management and for dealing with climate change," Michalak said.

This research is funded by NASA.

Michalak is a fellow in the Michigan Memorial Phoenix Energy Institute, which develops, coordinates and promotes multidisciplinary energy research and education at U-M.

For more information on Michalak, visit: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1381

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>