Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving the parrots: Texas A&M team sequences genome of endangered macaw birds

14.05.2013
In a groundbreaking move that provides new insight into avian evolution, biology and conservation, researchers at Texas A&M University have successfully sequenced the complete genome of a Scarlet macaw for the first time.

The team was led by Drs. Christopher Seabury and Ian Tizard at the Schubot Exotic Bird Health Center in the College of Veterinary Medicine & Biomedical Sciences at Texas A&M. Their work is published in the current issue of the open access and peer-reviewed scientific journal PLOS ONE.

The bird selected for the sequencing was a female named "Neblina" who lives in the Blank Park Zoo in Des Moines, Iowa. Neblina is believed to be from Brazil. She was confiscated during a raid on illegally imported exotic birds by the U.S. Fish and Wildlife Service in 1995.

Tizard says that a blood sample was taken from Neblina, DNA was extracted for sequencing, and after a series of steps, the sequence of the genome was assembled by Seabury and his team.

"The final analysis showed that there are about one billion DNA bases in the genome, which is about one-third of that found in mammals," Tizard explains. "Birds have much less DNA than mammals primarily because they do not possess nearly as much repetitive DNA."

The final completed genome demonstrates some similarities to that of the chicken. "But there are significant differences at both the genome and biological level," he adds. For example, "Macaws can fly great distances, while chickens can't. In addition, brain development and volume are very different in macaws, which is unsurprising since they are very intelligent birds compared to chickens. Likewise, macaws can live many years, while chickens usually do not, and therefore, our macaw genome sequence may help shed light on the genetic factors that influence longevity and intelligence."

Tizard notes that a Scarlet macaw was selected for the first such sequencing of its type because Texas A&M researchers have been studying the bird for many years. Working primarily at the Tambopata Research Center in Peru, Texas A&M bird experts have been investigating macaw diseases, behavior and genetics.

"We now have the ability to initiate large-scale, genome-wide approaches for population and phylogeography studies," explains Seabury, who is a collaborator of Donald Brightsmith, director of the Tambopata Macaw Research Project in Peru (http://www.macawproject.org/).

Seabury and Brightsmith add that the array of research possibilities regarding the Scarlet Macaw has now been significantly broadened by this research initiative.

Macaws are found in tropical Central and South America, from southern Mexico to northern Argentina. Trapping of the birds for the pet trade, plus loss of habitat due to deforestation in their native lands, has severely decreased their numbers since the 1960s.

There are 23 species of macaws, and some of these have already become extinct while others are endangered.

Macaws can live 50 to 75 years and often outlive their owners.

"They are considered to be among the most intelligent of all birds and also one of the most affectionate – it is believed they are sensitive to human emotions," explains Tizard.

"Possessing stunning feathers that are brightly colored, some macaws have a wingspan approaching four feet. They also usually mate for life and can fly as fast as 35 miles per hour."

The Schubot Center at Texas A&M is dedicated to studies on disease and conservation of exotic birds, both in captivity and in the wild. For more information, go to http://vetmed.tamu.edu/schubot.

About Research at Texas A&M University:

As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact:

Keith Randall
News & Information Services
Ian Tizard
979-845-4276 or itizard@cvm.tamu.edu
Christopher Seabury
979-845-2720
More news about Texas A&M University, go to
http://tamutimes.tamu.edu/
Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>