Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia’s CANARY software protects water utilities from terrorist attacks and contaminants, boosts quality

26.07.2011
Americans are used to drinking from the kitchen tap without fear of harm, even though water utilities might be vulnerable to terrorist attacks or natural contaminants.

Now, thanks to CANARY Event Detection Software — an open-source software developed by Sandia National Laboratories in partnership with the Environmental Protection Agency (EPA) — public water systems can be protected through enhanced detection of such threats.

“People are excited about it because it’s free and because we’ve shown that it works really well. We would love to have more utilities using it,” said Regan Murray, acting associate division director of the EPA’s Water Infrastructure Protection Division at the National Homeland Security Research Center.

The software tells utility operators within minutes whether something is wrong with their water, giving them time to warn and protect the public. And it’s improving water quality by giving utility managers more comprehensive real-time data about changes in their water.

CANARY is being used in Cincinnati and Singapore, and Philadelphia is testing the software system. A number of other U.S. utilities also are evaluating CANARY for future use.

Sean McKenna, the Sandia researcher who led the team that developed CANARY, said people began to pay attention to the security of the nation’s water systems after 9/11.

Sean McKenna, seated right, works with Kate Klise, standing, and Dave Hart, left, on the CANARY Event Detection Software, which is open source software developed by Sandia in partnership with the Environmental Protection Agency to enhance the detection of terrorist attacks or natural contaminants to public drinking water systems. The projected image shows what a utility operator might see, including a map locating a sensor that has detected contamination, a graph (top) that shows a measurement of water quality at the sensor and another graph showing the operator the probability that the water has been contaminated. (Photo by Randy Montoya) Click on the thumbnail for a high-resolution image.

McKenna and Murray said CANARY could have lessened the impact of the nation’s largest public water contamination. In 1993, a cryptosporidiosis outbreak in Milwaukee hastened the deaths of dozens of citizens, made more than 400,000 residents ill and cost more than $96 million in medical expenses and lost productivity, according to reports about the tragedy.

“If you don’t have a detection system, the way you find out about these things is when people get sick,” Murray said.

Sandia, a national security laboratory, had worked on water security before the 9/11 attacks. So when the EPA was looking for help early in the last decade to better monitor water utilities, they contacted Sandia.

A Sandia-developed, risk-assessment methodology for water focused on physical security of the utility infrastructure, but did not address detection and assessment of the impact of contamination within the water itself. CANARY was designed to meet that need for better assessment, McKenna said.

CANARY, which runs on a desktop computer, can be customized for individual water utilities, working with existing sensors and software, McKenna said.

While some utilities monitor their water using real-time sensors, many still send operators out once a week to take samples, said David Hart, the lead Sandia software developer for CANARY.

Compared to weekly samples, CANARY works at lightning speed.

“From the start of an event — when a contaminant reaches the first sensor — to an event alarm would be 20-40 minutes, depending on how the utility has CANARY configured,” McKenna said.

The challenge for any contamination detection system is reducing the number of false alarms and making data meaningful amidst a “noisy” background of information caused by the environment and the utility infrastructure itself.

CANARY researchers used specially designed numerical algorithms to analyze data coming from multiple sensors and differentiate between natural variability and unusual patterns that indicate a problem. For example, the Multivariate-Nearest Neighbor algorithm groups data into clusters based on time and distance, explained Kate Klise, a numerical analyst at Sandia. When new data is received, CANARY decides whether it’s close enough to a known cluster to be considered normal or whether it’s far enough away to be deemed anomalous. In the latter case, CANARY alerts the utility operator, Klise said.

The computer program uses a moving 1.5- to two-day window of past data to detect abnormal events by comparing predicted water characteristics with current observations. But a single outlier won’t trigger the alarm, which helps to avoid costly and inefficient false alarms. CANARY aggregates information over multiple 2- to 5-minute time steps to build evidence that water quality has undergone a significant change, McKenna said.

“We’ve taken techniques from different fields and put those together in a way they haven’t been put together before; certainly the application of those techniques to water quality monitoring hasn’t been done before,” McKenna said.

CANARY also provides information about gradual changes in the water, McKenna said.

One unintended benefit of the software is that when utility operators better understood the data being sent by their sensors, they could make changes to the management of the water systems to improve its overall quality, McKenna said.

“What we found from utilities we work with is that a better managed system is more secure, and a more secure system is better managed,” McKenna said.

Harry Seah, director of the Technology and Water Quality Office at the Public Utilities Board (PUB), Singapore’s national water authority, wrote in a letter supporting CANARY that the software provided a “quantum leap” in the utility’s practice.

In the past, Seah wrote, the utility depended on preset limits of three water characteristics to determine water quality.

“With the implementation of CANARY, relative changes in the patterns of these three parameters can be used to uncover water quality events, even if each individual parameter lies within the alarm limits,” Seah wrote. “This dramatically improves PUB’s ability to respond to water quality changes, and allows PUB to arrest poor quality water before [it reaches] the consumers.”

As more versions of the software are installed at water utilities, researchers are working on new application areas for CANARY, such as computer network traffic logs and geophysical log analysis used by petroleum drillers to analyze rocks at different depths.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Heather Clark, hclark@sandia.gov (505) 844-3511

Heather Clark | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>