Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Salp: Nature’s Near-Perfect Little Engine Just Got Better

10.08.2010
What if trains, planes, and automobiles all were powered simply by the air through which they move? Moreover, what if their exhaust and byproducts helped the environment?

Well, such an energy-efficient, self-propelling mechanism already exists in nature. The salp, a smallish, barrel-shaped organism that resembles a kind of streamlined jellyfish, gets everything it needs from the ocean waters to feed and propel itself. And, scientists believe its waste material may actually help remove carbon dioxide (CO2) from the upper ocean and the atmosphere.

Now, researchers at the Woods Hole Oceanographic Institution (WHOI) and MIT report that the half-inch to 5-inch-long creatures are even more efficient than had been believed. Reporting in the current issue of the Proceedings of the National Academy of Sciences, they have found that the ocean-dwelling salps are capable of capturing and eating extremely small organisms as well as larger ones, rendering them even hardier—and perhaps more plentiful—than had been thought.

"We had long thought that salps were about the most efficient filter feeders in the ocean,” said Laurence P. Madin, WHOI Director of Research and one of the investigators. “But these results extend their impact down to the smallest available size fraction, showing they consume particles spanning four orders of magnitude in size. This is like eating everything from a mouse to a horse."

Salps capture food particles, mostly phytoplankton, with an internal mucous filter net. Until now, it was thought that only particles as large as or larger than the 1.5-micron-wide holes in the mesh.

But a mathematical model suggested salps somehow might be capturing food particles smaller than that, said Kelly R. Sutherland, who wrote the paper as part of her PhD thesis at the MIT/WHOI Joint Program for graduate students. In the laboratory at WHOI, Sutherland and her colleagues offered salps food particles of three sizes: smaller, around the same size as, and larger than the mesh openings.

“We found that more small particles were captured than expected,” said Sutherland, now a postdoctoral researcher at Caltech. “When exposed to ocean-like particle concentrations, 80 percent of the particles that were captured were the smallest particles offered in the experiment."

This finding is important for a number of reasons. First, it helps explain how salps—which can exist either singly or in “chains” that may contain a hundred or more--are able to survive in the open ocean, their usual habitat, where the supply of larger food particles is low. Madin, who served as Sutherland’s advisor at WHOI, adds: “Their ability to filter the smallest particles may allow them to survive where other grazers can't.”

Second, and perhaps most significantly, it enhances the importance of the salps’ role in carbon cycling. As they eat small, as well as large, particles, “they consume the entire 'microbial loop' and pack it into large, dense fecal pellets,” Madin says.

The larger and denser the carbon-containing pellets, the sooner they sink to the ocean bottom. “This removes carbon from the surface waters,” says Sutherland, “and brings it to a depth where you won’t see it again for years to centuries.”

And the more carbon that sinks to the bottom, the more space there is for the upper ocean to accommodate carbon, hence limiting the amount that rises into the atmosphere as CO2, explains co-author Roman Stocker of MIT’s Department of Civil and Environmental Engineering .

“The most important aspect of this work is the very effective shortcut that salps introduce in the process of particle aggregation,” Stocker says. “Typically, aggregation of particles proceeds slowly, by steps, from tiny particles coagulating into slightly larger ones, and so forth.

“Now, the efficient foraging of salps on particles as small as a fraction of a micrometer introduces a substantial shortcut in this process, since digestion and excretion package these tiny particles into much larger particles, which thus sink a lot faster.”

This process starts with the mesh made of fine mucus fibers inside the salp’s hollow body. Salps, which can live for weeks or months, swim and eat in rhythmic pulses, each of which draws seawater in through an opening at the front end of the animal. The mesh captures the food particles, then rolls into a strand and goes into the gut, where it is digested.

It had been reasoned that the lower limit of particles captured by a salp was dictated by the size of the openings in the mesh (1.5 microns) In other words, particles smaller than the openings were expected to pass through the mesh. But the new results show that it can capture particles as small as 0.5 microns and smaller, because the particles stick to the mesh material itself in a process called direct interception, Sutherland says.

"Up to now it was assumed that very small cells or particles were eaten mainly by other microscopic consumers, like protozoans, or by a few specialized metazoan grazers like appendicularians,” said Madin. “This paper indicates that salps can eat much smaller organisms, like bacteria and the smallest phytoplankton, organisms that are numerous and widely distributed in the ocean."

As much as they are impressed with the practical implications involving carbon exchange, the scientists are captivated by the unique, almost magical performance of this natural undersea engine.

The work—funded by the National Science Foundation and the WHOI Ocean Life Institute--“does imply that salps are more efficient vacuum cleaners than we thought,” says Stocker. “Their amazing performance relies on a feat of bioengineering - the production of a nanometer-scale mucus net - the biomechanics of which still remain a mystery, adding to the fascination for and the interest in these animals.”

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | Newswise Science News
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>