Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmon Runs Boom, Go Bust Over Centuries

17.01.2013
Salmon runs are notoriously variable: strong one year, and weak the next. New research shows that the same may be true from one century to the next.

Scientists in the past 20 years have recognized that salmon stocks vary not only year to year, but also on decades-long time cycles. One example is the 30-year to 80-year booms and busts in salmon runs in Alaska and on the West Coast driven by the climate pattern known as the Pacific Decadal Oscillation.

Now work led by University of Washington researchers reveals those decadal cycles may overlay even more important, centuries-long conditions, or regimes, that influence fish productivity. Cycles lasting up to 200 years were found while examining 500-year records of salmon abundance in Southwest Alaska. Natural variations in the abundance of spawning salmon are as large those due to human harvest.

“We’ve been able to reconstruct what salmon runs looked like before the start of commercial fishing. But rather than finding a flat baseline – some sort of long-term average run size – we’ve found that salmon runs fluctuated hugely, even before commercial fishing started. That these strong or weak periods could persist for sometimes hundreds of years means we need to reconsider what we think of as ‘normal’ for salmon stocks,” said Lauren Rogers, who did this work while earning her doctorate in aquatic and fishery sciences at the UW and is now a post-doctoral researcher with the University of Oslo, Norway.

Rogers is the lead author of a paper on the findings in the Jan. 14 online early edition of the Proceedings of the National Academy of Sciences.

“Surprisingly, salmon populations in the same regions do not all show the same changes through time. It is clear that the salmon returning to different rivers march to the beat of a different – slow – drummer,” said Daniel Schindler, UW professor of aquatic and fishery sciences and co-author of the paper.

“The implications for management are profound,” Schindler said. “While it is convenient to assume that ecosystems have a constant static capacity for producing fish, or any natural resource, our data demonstrate clearly that capacity is anything but stationary. Thus, management must be ready to reduce harvesting when ecosystems become unexpectedly less productive and allow increased harvesting when ecosystems shift to more productive regimes.

“Management should also allow, and probably even encourage, fishers to move among rivers to exploit salmon populations that are particularly productive. It is not realistic to assume that all rivers in a region will perform equally well or poorly all the time,” he said.

The researchers examined sediment cores collected from 20 sockeye nursery lakes within 16 major watersheds in southwestern Alaska, including those of Bristol Bay. The scientists homed in on the isotopic signature of nitrogen that salmon accumulate in the ocean and leave behind in lake sediments when they die: When there was a lot of such nitrogen in the sediments, it meant returning runs during that time period were abundant; when there was little, runs had declined.

Climate is not the only reason for long-term changes in salmon abundance. Changes in food webs, diseases or other factors might be involved; however, at present, there are no clear explanations for the factors that cause the long-term variability observed in this study.

Most, but not all, of the lakes examined showed declines in the kind of nitrogen the scientists were tracking beginning around 1900, once commercial fisheries had developed. However, earlier fluctuations showed that natural processes had at times reduced salmon densities as much as recent commercial fisheries, the co-authors said.

“We expected to detect a signal of commercial fishing – fisheries remove a lot of the salmon, and thus salmon nitrogen, that would have otherwise ended up in the sediments. But we were surprised to find that previous returns of salmon to rivers varied just as dramatically,” Rogers said.

As the paper said, “Interestingly these same fluctuations also highlight that salmon stocks have the capacity to rebuild naturally following prolonged periods with low densities, suggesting a strong resilience of salmon to natural and anthropogenic depletion processes. Indeed, total salmon production (catch plus escapements) has been relatively high in recent years for most sockeye salmon stocks in southwestern Alaska, despite a century of intense harvesting.”

Other co-authors are Peter Lisi and Gordon Holtgrieve with the UW, Peter Leavitt and Lynda Bunting with University of Regina, Canada, Bruce Finney with Idaho State University, Daniel Selbie with Fisheries and Oceans Canada, Canada, Guangjie Chen with Yunnan Normal University, China, Irene Gregory-Eaves with McGill University, Canada, and Mark Lisac and Patrick Walsh with Togiak National Wildlife Refuge, Alaska.

Funding was provided by the Gordon and Betty Moore Foundation, the National Science Foundation, the U.S. Fish and Wildlife Service and the Natural Sciences and Engineering Research Council of Canada.

For more information:
Rogers, lauren.rogers@bio.uio.no
Schindler, 206-616-6724, deschind@uw.edu
Suggested websites:
--Paper abstract
http://www.pnas.org/content/early/2013/01/15/1212858110.abstract
--Proceedings of the National Academy of Sciences
http://www.pnas.org/
--Daniel Schindler
http://fish.washington.edu/people/schindler/

Sandra Hines | Newswise
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>