Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosella research could re-write ‘ring theory’

01.08.2008
New research has uncovered how different crimson rosella populations are related to each other – a discovery which has important implications for research into how climate change may affect Australia’s biodiversity.

Published today in the prestigious journal Proceedings of the Royal Society B, the research investigates the genetic and geographical relationships between different forms of crimson rosellas and the possible ways that these forms may have arisen.

Dr Gaynor Dolman of CSIRO’s Australian National Wildlife Collection says there are three main colour ‘forms’ of the crimson rosella – crimson, yellow and orange – which originated from the same ancestral population and are now distributed throughout south eastern Australia.

“Many evolutionary biologists have argued that the different forms of crimson rosellas arose, or speciated, through ‘ring speciation’,” she says.

The ring speciation hypothesis predicts that a species that spreads to new areas may eventually join back up with itself, forming a ring. By that time, the populations at the join in the ring may be two distinct species and unable to interbreed, despite continuous gene flow, or interbreeding, between populations around the ring.

“We found that in the case of crimson rosellas, their three separate genetic groups don’t show a simple link to the geographical distribution of the colour forms,” Dr Dolman says.

“For example, orange Adelaide and crimson Kangaroo Island rosellas are separated by 15km of ocean but are genetically similar. Conversely, genetic dissimilarity was found in the geographically linked yellow and orange populations in inland south eastern Australia.

“We found that in the case of crimson rosellas, their three separate genetic groups don’t show a simple link to the geographical distribution of the colour forms,”

Dr Dolman says.“We rejected the ring hypothesis because it predicts only one region of genetic dissimilarity, which should occur at the geographical location of the join in the ring, around the headwaters of the Murray and Murrumbidgee Rivers.

“However, it is possible that crimson rosellas formed a ring at some stage in their evolutionary history, but that the evidence has been lost through climatic or environmental changes,” she says.

Wildlife genetic research of this kind is increasing our understanding of the biogeography and evolution of Australia’s terrestrial vertebrates, helping Australia sustainably manage its biodiversity and ecosystem functions in the face of land use and climate change.

This work involved a team of researchers from CSIRO, Deakin University and the South Australian Museum.

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>