Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to the Root of the Matter

21.08.2008
A number of current issues related to water availability and climate change are giving impetus to new research aimed at roots and their functioning.

The research is producing new experimental methods, data acquisition, and theoretical understanding. Recently, scientists from the U.S. Salinity Laboratory, USDA-Agricultural Research Service, assembled a collection of new research in the form of 13 papers that are published as a special section of the August issue of Vadose Zone Journal.

Like most things that exist underground, plant roots are out-of-sight and easily forgotten, but while flowers, leaves, and other aboveground plant parts are more familiar, plant roots are equally deserving of our appreciation. Beneath every towering tree, tasty crop, and dazzling ornamental lies a root system that makes it all possible. Roots provide anchor and support for plants, extract water and nutrients from soil, and reduce soil erosion. Roots also play an important role in soil carbon cycling and the global carbon balance.

A number of current issues related to water availability and climate change are giving impetus to new research aimed at roots and their functioning. The research is producing new experimental methods, data acquisition, and theoretical understanding. Recently, scientists from the U.S. Salinity Laboratory, USDA-Agricultural Research Service, assembled a collection of new research in the form of 13 papers that are published as a special section of the August issue of Vadose Zone Journal. Some of the research in these papers was presented at the 2006 Soil Science Society of America Annual Meeting (Indianapolis, IN) and the 2007 European Geosciences Union General Assembly (Vienna, Austria).

Several of the collected papers take aim at the "out-of-sight" problem, using advanced imaging technologies to observe roots and their functioning at the scale of a single plant or root. Imaging technologies such as Magnetic Resonance Imaging (MRI) are more commonly used in medical and industrial applications, and their use in root research requires new measurement procedures and protocols. In the collected works, researchers were able to successfully obtain images of growing root systems and were able to observe water uptake patterns.

Another current research topic concerns the role of roots in carbon cycling and the implications for global climate change. New research reported in the special section demonstrates that root and carbon dynamics are highly complex, requiring nearly continuous monitoring to understand the biophysical factors that regulate belowground carbon dynamics.

A few of the collected papers are concerned with the development of mathematical models that simulate various root processes, including the uptake of water. These types of models form the basis for various computer simulation tools that are currently used in agricultural and environmental management. For example, one paper in the collection uses such a model to investigate the role of root uptake in regulating the movement of plutonium in soils at the Savannah River nuclear materials processing site.

Roots can also be studied at the level of plant species or biomes. Included in the new collection is research reporting on differences in root zone hydrologic behavior for various species in chaparral ecosystems. The observed differences are minor, but there are detectible differences in how different vegetation affects the water budget. Other research looks at factors affecting rooting depth for different soils, climates, and vegetation. The authors conclude that many ecological factors favor shallow roots over deep roots, and hypothesize that root distributions for particular plant communities tend to be only as deep as necessary to meet specific water requirements.

Todd Skaggs and Peter Shouse, both of the U.S. Salinity Laboratory, Riverside, CA, served as guest editors of the special section, Roots and Root Function, and introduce the papers in a preface to the special section.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://vzj.scijournals.org/cgi/content/full/7/3/1008.

Vadose Zone Journal, http://www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone, the mostly unsaturated zone between the soil surface and the permanent groundwater table. VZJ is a peer-reviewed, international, online journal publishing reviews, original research, and special sections across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit http://www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.vadosezonejournal.org/
http://vzj.scijournals.org/cgi/content/full/7/3/1008.
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>