Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocks could be harnessed to sponge vast amounts of CO2 from air

07.11.2008
Proposed method would speed natural reactions a million times

Scientists say that a type of rock found at or near the surface in the Mideast nation of Oman and other areas around the world could be harnessed to soak up huge quantities of globe-warming carbon dioxide. Their studies show that the rock, known as peridotite, reacts naturally at surprisingly high rates with CO2 to form solid minerals—and that the process could be speeded a million times or more with simple drilling and injection methods. The study appears in this week's early edition of the Proceedings of the National Academy of Sciences.

Peridotite comprises most or all of the rock in the mantle, which undergirds earth's crust. It starts some 20 kilometers or more down, but occasionally pieces are exhumed when tectonic plates collide and push the mantle rock to the surface, as in Oman. Geologists already knew that once exposed to air, the rock can react quickly with CO2, forming a solid carbonate like limestone or marble. However, schemes to transport it to power plants, grind it and combine it with smokestack gases have been seen as too costly and energy intensive. The researchers say that the discovery of previously unknown high rates of reaction underground means CO2 could be sent there artificially, at far less expense. "This method would afford a low-cost, safe and permanent method to capture and store atmospheric CO2," said the lead author, geologist Peter Kelemen.

Kelemen and geochemist Juerg Matter, both at Columbia University's Lamont-Doherty Earth Observatory, made the discovery during field work in the Omani desert, where they have worked for years. Their study area, a Massachusetts-size expanse of largely bare, exposed peridotite, is crisscrossed on the surface with terraces, veins and other formations of whitish carbonate minerals, formed rapidly in recent times when minerals in the rock reacted with CO2-laden air or water. Up to 10 times more carbonates lie in veins belowground; but the subterranean veins were previously thought to be formed by processes unconnected to the atmosphere, and to be nearly as old as the 96-million-year-old rock itself. However, using conventional carbon isotope dating, Kelemen and Matter showed that the underground veins are also quite young— 26,000 years on average—and are still actively forming as CO2-rich groundwater percolates downward. Many underground samples were conveniently exposed in newly constructed road cuts. All told, Kelemen and Matter estimate that the Omani peridotite is naturally absorbing 10,000 to 100,000 tons of carbon a year--far more than anyone had thought. Similarly large exposures of peridotite are known on the Pacific islands of Papua New Guinea and Caledonia, and along the coasts of Greece and the former Yugoslavia; smaller deposits occur in the western United States and many other places.

The scientists say that the process of locking up carbon in the rocks could be speeded 100,000 times or more simply by boring down and injecting heated water containing pressurized CO2. Once jump-started in this way, the reaction would naturally generate heat—and that heat would in turn hasten the reaction, fracturing large volumes of rock, exposing it to reaction with still more CO2-rich solution. Heat generated by the earth itself also would help, since the further down you go, the higher the temperature. (The exposed Omani peridotite extends down some 5 kilometers.) The scientists say that such a chain reaction would need little energy input after it was started. Accounting for engineering challenges and other imperfections, they assert that Oman alone could probably absorb some 4 billion tons of atmospheric carbon a year—a substantial part of the 30 billion sent into the atmosphere by humans, mainly through burning of fuels. With large amounts of new solids forming underground, cracking and expansion would generate micro-earthquakes—but not enough to be readily perceptible to humans, says Kelemen.

"It's fortunate that we have these kinds of rocks in the Gulf region," said Matter. Much of the world's oil and gas is produced there, and Oman is constructing new gas-fired electric plants that could become large sources of CO2 could be pumped down.

Matter has been working on a separate project in Iceland, where a different kind of rock, volcanic basalt, also shows promise for absorbing CO2 produced by power plants. Trials there are set to begin n spring 2009, in partnership with Reykjavik Energy, and the universities of Iceland and Toulouse (France).

According to the scientists, Petroleum Development Oman, the state oil company, is interested in a pilot program.

Kelemen said: "We see this as just one of a whole suite of methods to trap carbon. It's a big mistake to think that we should be searching for one thing that will take care of it all."

Kevin Krajick | EurekAlert!
Further information:
http://www.ei.columbia.edu
http://www.earth.columbia.edu
http://www.ldeo.columbia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>