Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rock-Paper-Scissors Tournaments Explain Ecological Diversity

16.03.2011
The mystery of biodiversity – how thousands of similar species can co-exist in a single ecosystem – might best be understood as the result of a massive rock-paper-scissors tournament, a new study has revealed.

According to classical ecology, when two species compete for the same resource, eventually the more successful species will win out while the other will go extinct. But that rule cannot explain systems such as the Amazon, where thousands of tree species occupy similar ecological niches.

The childhood game of rock-paper-scissors provides one solution to this puzzle, report researchers at the University of Chicago and the University of California, Santa Barbara in Proceedings of the National Academy of Sciences. A mathematical model designed around the game's dynamics produced the potential for limitless biodiversity, and suggested some surprising new ecological rules.

"If you have two competitors and one is better, eventually one of the two will be driven extinct," said co-author Stefano Allesina, PhD, assistant professor of ecology and evolution at the University of Chicago. "But if you have three or more competitors and you use this rock-paper-scissor model, you can prove that many of these species can co-exist forever."

The rock-paper-scissors rules are an example of an "intransitive" competition, where the participants cannot be simply ordered from best to worst. When placed in pairs, winners and losers emerge: rock beats scissors, paper beats rock, and scissors beat paper. But when all three strategies compete, an impasse is reached where no one element is the undisputed winner.

In nature, this kind of rock-paper-scissors relationship has been observed for three-species groups of bacteria and lizards. But scientists had not yet studied how more complex intransitive relationships with more than three players – think rock-paper-scissors-dynamite, and beyond – could model the more complex ecosystems.

"No one had pushed it to the limit and said, instead of three species, what happens if you have 4,000? Nobody knew how," Allesina said. "What we were able to do is build the mathematical framework in which you can find out what will happen with any number of species."

Allesina and co-author Jonathan Levine, PhD, professor of ecology, evolution & marine biology at UCSB, combined the advanced mathematics of game theory, graph theory, and dynamical systems to simulate the outcome when different numbers of species compete for various amounts of "limiting factors" with variable success. An example, Allesina said, is a group of tree species competing for multiple resources such as nitrogen, phosphorus, light, and water.

When more limiting factors are added to the model, the amount of biodiversity quickly increases as a "tournament" of rock-paper-scissors matches develops between species, eliminating some weak players but maintaining a stable balance between multiple survivors.

"What we put together shows that when you allow species to compete for multiple resources, and allow different resources to determine which species win, you end up with a complex tournament that allows numerous species to coexist because of the multiple rock-paper-scissors games embedded within," Levine said.

In some models, where each species' advantage in one limiting factor is coupled to a disadvantage on another, a mere two limiting factors is capable of producing maximal biodiversity – which stabilizes at half the number of species originally put into the model, no matter how large.

"It basically says there's no saturation," Allesina said. "If you have this tradeoff and have two factors, you can have infinite species. With simple rules, you can create remarkable diversity."

The model also produced a strange result: when the limiting factors are uniformly distributed, the total number of species that survive is always an odd number. Adjusting the model's parameters to more closely model the uneven distribution of resources in nature removed this intriguing quirk.

Allesina and Levine tested the realism of their model by successfully reverse-engineering a network of species relationships from field data on populations of tropical forest trees and marine invertebrates. Next, they will test whether the model can successfully predict the population dynamics of an ecosystem. Recently, Allesina was awarded a $450,000 grant by the James S. McDonnell Foundation to conduct experiments on bacterial populations that test the rock-paper-scissors dynamics in real time.

In the meantime, the rock-paper-scissors model proposes new ideas about the stability of ecosystems – or the dramatic consequences when only one species in the system is removed.

"The fact that many species co-exist could depend on the rare species, which are more likely to go extinct by themselves. If they are closing the loop, then they really have a key role, because they are the only ones keeping the system from collapsing," Allesina said.

"If you're playing rock-paper-scissors and you lose rock, you're going to end up with only scissors in the system," Levine said. "In a more complex system, there's an immediate cascade that extends to a very large number of species."

The paper, "Competitive network theory of species diversity," was published online by the Proceedings of the National Academy of Sciences on March 14, 2011. The research was supported by the James S. McDonnell Foundation and the National Science Foundation.

Robert Mitchum | Newswise Science News
Further information:
http://www.uchospitals.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>