Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot fish could monitor water quality

03.11.2009
Michigan State University scientists developing biomimetic probes

Nature inspires technology for an engineer and an ecologist teamed up at Michigan State University. They're developing robots that use advanced materials to swim like fish to probe underwater environments.

"Fish are very efficient," explained Xiaobo Tan, an assistant professor of electrical and computer engineering. "They can perform very efficient locomotion and maneuvering in the water."

Robotic fish – perhaps schools of them operating autonomously for months – could give researchers far more precise data on aquatic conditions, deepening our knowledge of critical water supplies and habitats.

Tan and Elena Litchman, an assistant professor of zoology based at MSU's Kellogg Biological Station on Gull Lake in Kalamazoo County, recently won funding from the National Science Foundation to integrate their research.

"The robotic fish will be providing a consistent level of data that hasn't been possible before," Litchman explained. "With these patrolling fish we will be able to obtain information at an unprecedentedly high spatial and temporal resolution. Such data are essential for researchers to have a more complete picture of what is happening under the surface as climate change and other outside forces disrupt the freshwater ecosystems. It will bring environmental monitoring to a whole new level."

The robotic fish will carry sensors recording such things as temperature, dissolved oxygen, pollutants and harmful algae. Tan also is developing electronics so the devices can navigate and communicate in their watery environment.

"This project will greatly advance bio-robotic technology," Tan said. "The project is very practical and we are designing the fish to be inexpensive so they can be used in various applications like sampling lakes, monitoring aquafarms and safeguarding water reservoirs."

The robotic fish might detect toxic algal blooms, for example.

"As air temperature increases, the lakes and reservoirs also heat up," Litchman said. "Increasing water temperature creates strong stratification within the various layers of the water and this may lead to increased growth of harmful algae. Some of these algal blooms create poor conditions for fish and exude toxins that also endanger people."

To mimic how fish swim and maneuver, Tan builds "fins" for robotic fish with electro-active polymers that use electricity to change shape. Similar to real muscle tissue, ion movements twist and bend the polymer when voltage is applied. The effect works in reverse, too – slender "feelers" could signal maneuvering circuits in a sort of electro-active central nervous system. Infrared sensors also could be used for "eyes" to avoid obstacles.

The robots will communicate wirelessly with a docking station after surfacing at programmed intervals and could similarly be linked to other robotic fish for coordinated maneuvers or signal relay. Global positioning system technology and inertial measurement units will allow precise navigation.

It's not big, but it's a keeper: A 9-inch prototype now swimming in Tan's laboratory tank is modeled on the yellow perch by John Thon, a member of the research team who teaches art at nearby Holt Junior High School. The device isn't strong enough to resist stiff currents, so for now must be confined to relatively still waters. Future versions will incorporate the ability to change buoyancy to assist locomotion and maneuver.

Tan's earlier foundational work on the robots was funded by the Office of Naval Research and a CAREER award from the National Science Foundation. Litchman's work on algal blooms also is supported by an NSF CAREER grant.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://news.msu.edu
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>