Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot fish could monitor water quality

03.11.2009
Michigan State University scientists developing biomimetic probes

Nature inspires technology for an engineer and an ecologist teamed up at Michigan State University. They're developing robots that use advanced materials to swim like fish to probe underwater environments.

"Fish are very efficient," explained Xiaobo Tan, an assistant professor of electrical and computer engineering. "They can perform very efficient locomotion and maneuvering in the water."

Robotic fish – perhaps schools of them operating autonomously for months – could give researchers far more precise data on aquatic conditions, deepening our knowledge of critical water supplies and habitats.

Tan and Elena Litchman, an assistant professor of zoology based at MSU's Kellogg Biological Station on Gull Lake in Kalamazoo County, recently won funding from the National Science Foundation to integrate their research.

"The robotic fish will be providing a consistent level of data that hasn't been possible before," Litchman explained. "With these patrolling fish we will be able to obtain information at an unprecedentedly high spatial and temporal resolution. Such data are essential for researchers to have a more complete picture of what is happening under the surface as climate change and other outside forces disrupt the freshwater ecosystems. It will bring environmental monitoring to a whole new level."

The robotic fish will carry sensors recording such things as temperature, dissolved oxygen, pollutants and harmful algae. Tan also is developing electronics so the devices can navigate and communicate in their watery environment.

"This project will greatly advance bio-robotic technology," Tan said. "The project is very practical and we are designing the fish to be inexpensive so they can be used in various applications like sampling lakes, monitoring aquafarms and safeguarding water reservoirs."

The robotic fish might detect toxic algal blooms, for example.

"As air temperature increases, the lakes and reservoirs also heat up," Litchman said. "Increasing water temperature creates strong stratification within the various layers of the water and this may lead to increased growth of harmful algae. Some of these algal blooms create poor conditions for fish and exude toxins that also endanger people."

To mimic how fish swim and maneuver, Tan builds "fins" for robotic fish with electro-active polymers that use electricity to change shape. Similar to real muscle tissue, ion movements twist and bend the polymer when voltage is applied. The effect works in reverse, too – slender "feelers" could signal maneuvering circuits in a sort of electro-active central nervous system. Infrared sensors also could be used for "eyes" to avoid obstacles.

The robots will communicate wirelessly with a docking station after surfacing at programmed intervals and could similarly be linked to other robotic fish for coordinated maneuvers or signal relay. Global positioning system technology and inertial measurement units will allow precise navigation.

It's not big, but it's a keeper: A 9-inch prototype now swimming in Tan's laboratory tank is modeled on the yellow perch by John Thon, a member of the research team who teaches art at nearby Holt Junior High School. The device isn't strong enough to resist stiff currents, so for now must be confined to relatively still waters. Future versions will incorporate the ability to change buoyancy to assist locomotion and maneuver.

Tan's earlier foundational work on the robots was funded by the Office of Naval Research and a CAREER award from the National Science Foundation. Litchman's work on algal blooms also is supported by an NSF CAREER grant.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://news.msu.edu
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>