Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robot fish could monitor water quality

Michigan State University scientists developing biomimetic probes

Nature inspires technology for an engineer and an ecologist teamed up at Michigan State University. They're developing robots that use advanced materials to swim like fish to probe underwater environments.

"Fish are very efficient," explained Xiaobo Tan, an assistant professor of electrical and computer engineering. "They can perform very efficient locomotion and maneuvering in the water."

Robotic fish – perhaps schools of them operating autonomously for months – could give researchers far more precise data on aquatic conditions, deepening our knowledge of critical water supplies and habitats.

Tan and Elena Litchman, an assistant professor of zoology based at MSU's Kellogg Biological Station on Gull Lake in Kalamazoo County, recently won funding from the National Science Foundation to integrate their research.

"The robotic fish will be providing a consistent level of data that hasn't been possible before," Litchman explained. "With these patrolling fish we will be able to obtain information at an unprecedentedly high spatial and temporal resolution. Such data are essential for researchers to have a more complete picture of what is happening under the surface as climate change and other outside forces disrupt the freshwater ecosystems. It will bring environmental monitoring to a whole new level."

The robotic fish will carry sensors recording such things as temperature, dissolved oxygen, pollutants and harmful algae. Tan also is developing electronics so the devices can navigate and communicate in their watery environment.

"This project will greatly advance bio-robotic technology," Tan said. "The project is very practical and we are designing the fish to be inexpensive so they can be used in various applications like sampling lakes, monitoring aquafarms and safeguarding water reservoirs."

The robotic fish might detect toxic algal blooms, for example.

"As air temperature increases, the lakes and reservoirs also heat up," Litchman said. "Increasing water temperature creates strong stratification within the various layers of the water and this may lead to increased growth of harmful algae. Some of these algal blooms create poor conditions for fish and exude toxins that also endanger people."

To mimic how fish swim and maneuver, Tan builds "fins" for robotic fish with electro-active polymers that use electricity to change shape. Similar to real muscle tissue, ion movements twist and bend the polymer when voltage is applied. The effect works in reverse, too – slender "feelers" could signal maneuvering circuits in a sort of electro-active central nervous system. Infrared sensors also could be used for "eyes" to avoid obstacles.

The robots will communicate wirelessly with a docking station after surfacing at programmed intervals and could similarly be linked to other robotic fish for coordinated maneuvers or signal relay. Global positioning system technology and inertial measurement units will allow precise navigation.

It's not big, but it's a keeper: A 9-inch prototype now swimming in Tan's laboratory tank is modeled on the yellow perch by John Thon, a member of the research team who teaches art at nearby Holt Junior High School. The device isn't strong enough to resist stiff currents, so for now must be confined to relatively still waters. Future versions will incorporate the ability to change buoyancy to assist locomotion and maneuver.

Tan's earlier foundational work on the robots was funded by the Office of Naval Research and a CAREER award from the National Science Foundation. Litchman's work on algal blooms also is supported by an NSF CAREER grant.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>