Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road emissions dominate global transport emissions

21.11.2008
The world’s car park is growing. It has become so big that the impact of emissions from today’s road traffic on the global temperature in 2100 will be six times greater than that from today’s air traffic.

Today’s global road emissions have a strong and long-lasting effect on climate. After 100 years these emissions will lead to a temperature increase that is six times greater than the temperature increase from today’s air transport, according to the CICERO study "Global temperature responses to current emissions from the transport sectors" published in Proceedings of the National Academy of Sciences (PNAS). The study includes the effects of all climate-relevant components of the emissions, not only CO2.

“Among the transport sectors, road transport has a strongly dominating temperature effect, both on short and longer terms,” says Jan Fuglestvedt, researcher at CICERO in Oslo, Norway.

Total global emissions

“It is important to underline that the study looks at the effect of the total global emissions, not emissions per passenger kilometer,” says Terje Berntsen, the other researcher behind the study.

The researchers will calculate climate impacts per passenger kilometer in a later study.

The study has investigated how the global emissions from different transport sectors (road, rail, shipping, and aviation) in year 2000 affect the future temperature. While air transport has some strong climate effects that decrease relatively quickly over time, emissions from road transport have a strong and long-lasting effect on climate. The reason is the much larger total fuel consumption and thus higher CO2 emissions from road traffic, while for aviation there is a strong short-term warming by aviation induced contrails and cirrus clouds.

Air transport effects short lasting

“In contrast to road transport, air transport has several strong, but short lasting, effects on the global temperature,” says Fuglestvedt. “But there are large uncertainties in our understanding of these effects. It is important to work towards reducing this uncertainty.”

Current shipping emissions differ from emissions from the road and aviation sectors by having a cooling effect on climate that lasts 30-70 years. This cooling effect results from the very high emissions of SO2 and NOx. However, the warming effect will dominate in the long term because shipping also emits significant amounts of CO2.

Neither international shipping nor international aviation is covered by the Kyoto Protocol today. Ongoing climate negotiations are debating whether one these emissions should be included in a post-Kyoto agreement.

Choice of method important

Understanding the climate impact of transportation requires not only taking into account the total quantity of emissions, but also how emissions of various components interact with one another and the climate. Transportation emits a broad mix of components with very different characteristics with respect to climate impacts. They operate on different timescales and cause both warming and cooling. Aviation emits between 2 and 3 percent of the total human-produced CO2 emissions, but that does not tell the full story. Effects down the cause-effect chain must be considered when we assess the climate impacts of this sector.

“When we quantify and compare the climate impacts of the different transport sectors, the conclusions will vary strongly depending on which method and climate indicator is used and the adopted time perspectives,” says Fuglestvedt. “In this work we have looked at the emissions’ effect on global mean temperature. This is a significant step forward compared to earlier work. In our previous study we quantified the climate impacts in terms of accumulated radiative forcing, which is similar to the Global Warming Potential (GWP) method used in the Kyoto Protocol.”

Strong memory

Integrated radiative forcing and GWPs give equal weight to effects over time up to the chosen time horizon.

“After 100 years, this method still gives full weight to impacts on climate that happened 99 years ago. It therefore has a ‘strong memory,’” Fuglestvedt explains. “When used on short-lived gasses and particles with strong climate effect, this characteristic of GWP can give results that are quite different from what we get when we use temperature as indicator.”

Petter Haugneland | alfa
Further information:
http://www.cicero.uio.no
http://www.newscientist.com/article/dn16093-planes-trains-or-automobiles-climate-villains-revealed.html

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>