Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road may disrupt migration, ruin Serengeti, study finds

01.02.2011
Building a highway through Serengeti National Park may devastate one of the world's last large-scale herd migrations and the region's ecosystem, according to new research by an international team of ecologists, including a University of Guelph professor.

The study by John Fryxell, a Guelph integrative biology professor, and four other scientists from the United States and Canada appears in a recent issue of PLoS ONE, a peer-reviewed international journal published by the Public Library of Science.

The researchers studied the effects of a proposal by the Tanzanian government to build a road that would bisect the northern portion of Serengeti National Park.

The Serengeti is one of few remaining places where large-scale migrations still occur, with nearly two million wildebeest, antelope and zebras looping the plains from Tanzania to Kenya and back each year.

The researchers found that the road may cause a 35-per-cent reduction in wildebeest herds, plus direct and indirect effects on many other species and ecosystem processes.

The study did not consider other potential negative effects, such as car accidents, development or increased poaching, which would reduce herd numbers even further.

"This project has the potential to transform one of the greatest wonders in the world and one of the world's most iconic national parks," said Fryxell, who worked on the study with lead author Ricardo Holdo from the University of Missouri and professors from the University of British Columbia, Princeton University and the University of Florida.

The researchers used simulation models of wildebeest movement and population dynamics to predict the effects of the proposed highway, which could block the northern part of the migration route and access to water in the dry season.

Fryxell said that fragmenting the landscape disrupts movement patterns and the wildebeest's ability to track changes in forage resources across the landscape. The effect would be a one-third reduction in herd size.

"The wildebeest migration plays an important role in a number of key ecological processes, so this finding has important ramifications for ecosystem biodiversity, structure and function," Fryxell said.

Fryxell has studied migration for more than 30 years. Last fall, his research was featured in National Geographic's epic Great Migrations. The seven-part series took three years to produce and was filmed in 20 countries on all seven continents. Fryxell appeared in a segment on the science of migration that included his extensive footage shot in the Serengeti.

For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca, or Deirdre Healey, Ext. 56982 or dhealey@uoguelph.ca.

Professor John Fryxell | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>