Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Road may disrupt migration, ruin Serengeti, study finds

Building a highway through Serengeti National Park may devastate one of the world's last large-scale herd migrations and the region's ecosystem, according to new research by an international team of ecologists, including a University of Guelph professor.

The study by John Fryxell, a Guelph integrative biology professor, and four other scientists from the United States and Canada appears in a recent issue of PLoS ONE, a peer-reviewed international journal published by the Public Library of Science.

The researchers studied the effects of a proposal by the Tanzanian government to build a road that would bisect the northern portion of Serengeti National Park.

The Serengeti is one of few remaining places where large-scale migrations still occur, with nearly two million wildebeest, antelope and zebras looping the plains from Tanzania to Kenya and back each year.

The researchers found that the road may cause a 35-per-cent reduction in wildebeest herds, plus direct and indirect effects on many other species and ecosystem processes.

The study did not consider other potential negative effects, such as car accidents, development or increased poaching, which would reduce herd numbers even further.

"This project has the potential to transform one of the greatest wonders in the world and one of the world's most iconic national parks," said Fryxell, who worked on the study with lead author Ricardo Holdo from the University of Missouri and professors from the University of British Columbia, Princeton University and the University of Florida.

The researchers used simulation models of wildebeest movement and population dynamics to predict the effects of the proposed highway, which could block the northern part of the migration route and access to water in the dry season.

Fryxell said that fragmenting the landscape disrupts movement patterns and the wildebeest's ability to track changes in forage resources across the landscape. The effect would be a one-third reduction in herd size.

"The wildebeest migration plays an important role in a number of key ecological processes, so this finding has important ramifications for ecosystem biodiversity, structure and function," Fryxell said.

Fryxell has studied migration for more than 30 years. Last fall, his research was featured in National Geographic's epic Great Migrations. The seven-part series took three years to produce and was filmed in 20 countries on all seven continents. Fryxell appeared in a segment on the science of migration that included his extensive footage shot in the Serengeti.

For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or, or Deirdre Healey, Ext. 56982 or

Professor John Fryxell | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>