Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road may disrupt migration, ruin Serengeti, study finds

01.02.2011
Building a highway through Serengeti National Park may devastate one of the world's last large-scale herd migrations and the region's ecosystem, according to new research by an international team of ecologists, including a University of Guelph professor.

The study by John Fryxell, a Guelph integrative biology professor, and four other scientists from the United States and Canada appears in a recent issue of PLoS ONE, a peer-reviewed international journal published by the Public Library of Science.

The researchers studied the effects of a proposal by the Tanzanian government to build a road that would bisect the northern portion of Serengeti National Park.

The Serengeti is one of few remaining places where large-scale migrations still occur, with nearly two million wildebeest, antelope and zebras looping the plains from Tanzania to Kenya and back each year.

The researchers found that the road may cause a 35-per-cent reduction in wildebeest herds, plus direct and indirect effects on many other species and ecosystem processes.

The study did not consider other potential negative effects, such as car accidents, development or increased poaching, which would reduce herd numbers even further.

"This project has the potential to transform one of the greatest wonders in the world and one of the world's most iconic national parks," said Fryxell, who worked on the study with lead author Ricardo Holdo from the University of Missouri and professors from the University of British Columbia, Princeton University and the University of Florida.

The researchers used simulation models of wildebeest movement and population dynamics to predict the effects of the proposed highway, which could block the northern part of the migration route and access to water in the dry season.

Fryxell said that fragmenting the landscape disrupts movement patterns and the wildebeest's ability to track changes in forage resources across the landscape. The effect would be a one-third reduction in herd size.

"The wildebeest migration plays an important role in a number of key ecological processes, so this finding has important ramifications for ecosystem biodiversity, structure and function," Fryxell said.

Fryxell has studied migration for more than 30 years. Last fall, his research was featured in National Geographic's epic Great Migrations. The seven-part series took three years to produce and was filmed in 20 countries on all seven continents. Fryxell appeared in a segment on the science of migration that included his extensive footage shot in the Serengeti.

For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca, or Deirdre Healey, Ext. 56982 or dhealey@uoguelph.ca.

Professor John Fryxell | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>