Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rivers recover natural conditions quickly following dam removal

09.10.2014

A study of the removal of two dams in Oregon suggests that rivers can return surprisingly fast to a condition close to their natural state, both physically and biologically, and that the biological recovery might outpace the physical recovery.

The analysis, published by researchers from Oregon State University in the journal PLOS One, examined portions of two rivers – the Calapooia River and Rogue River. It illustrated how rapidly rivers can recover, both from the long-term impact of the dam and from the short-term impact of releasing stored sediment when the dam is removed.


Removing Savage Rapids Dam

Most dams have decades of accumulated sediment behind them, and a primary concern has been whether the sudden release of all that sediment could cause significant damage to river ecology or infrastructure.

However, this study concluded that the continued presence of a dam on the river constituted more of a sustained and significant alteration of river status than did the sediment pulse caused by dam removal.

“The processes of ecological and physical recovery of river systems following dam removal are important, because thousands of dams are being removed all over the world,” said Desirée Tullos, an associate professor in the OSU Department of Biological and Ecological Engineering.

“Dams are a significant element in our nation’s aging infrastructure,” she said. “In many cases, the dams haven’t been adequately maintained and they are literally falling apart. Depending on the benefits provided by the dam, it’s often cheaper to remove them than to repair them.”

According to the American Society of Civil Engineers, the United States has 84,000 dams with an average age of 52 years. Almost 2,000 are now considered both deficient and “high hazard,” and it would take $21 billion to repair them. Rehabilitating all dams would cost $57 billion. Thus, the removal of older dams that generate only modest benefits is happening at an increasing rate.

In this study, the scientists examined the two rivers both before and after removal of the Brownsville Dam on the Calapooia River and the Savage Rapids Dam on the Rogue River. Within about one year after dam removal, the river ecology at both sites, as assessed by aquatic insect populations, was similar to the conditions upstream where there had been no dam impact.

Recovery of the physical structure of the river took a little longer. Following dam removal, some river pools downstream weren’t as deep as they used to be, some bars became thicker and larger, and the grain size of river beds changed. But those geomorphic changes diminished quickly as periodic floods flushed the river system, scientists said.

Within about two years, surveys indicated that the river was returning to the pre-removal structure, indicating that the impacts of the sediment released with dam removal were temporary and didn’t appear to do any long-term damage.

Instead, it was the presence of the dam that appeared to have the most persistent impact on the river biology and structure – what scientists call a “press” disturbance that will remain in place so long as the dam is there.

This press disturbance of dams can increase water temperatures, change sediment flow, and alter the types of fish, plants and insects that live in portions of rivers.  But the river also recovered rapidly from those impacts once the dam was gone.

It’s likely, the researchers said, that the rapid recovery found at these sites will mirror recovery on rivers with much larger dams, but more studies are needed.

For example, large scale and rapid changes are now taking place on the Elwha River in Washington state, following the largest dam removal project in the world. The ecological recovery there appears to be occurring rapidly as well. In 2014, Chinook salmon were observed in the area formerly occupied by one of the reservoirs, the first salmon to see that spot in 102 years.

“Disturbance is a natural river process,” Tullos said. “In the end, most of these large pulses of sediment aren’t that big of a deal, and there’s often no need to panic. The most surprising finding to us was that indicators of the biological recovery appeared to happen faster than our indicators of the physical recovery.”

The rates of recovery will vary across sites, though. Rivers with steeper gradients, more energetic flow patterns, and non-cohesive sediments will recover more quickly than flatter rivers with cohesive sediments, researchers said.

This research was supported by the Oregon Watershed Enhancement Board, the National Oceanic and Atmospheric Association and the National Marine Fisheries Service. It was a collaboration of researchers from the OSU College of Agricultural Sciences, College of Engineering, and College of Science.

The study this story is based on is available online: http://bit.ly/1rdQ4wL

About Oregon State University:

OSU is one of only two U.S. universities designated a land-, sea-, space- and sun-grant institution. OSU is also Oregon’s only university to hold both the Carnegie Foundation’s top designation for research institutions and its prestigious Community Engagement classification. Its more than 26,000 students come from all 50 states and more than 90 nations. OSU programs touch every county within Oregon, and its faculty teach and conduct research on issues of national and global importance.

 

Desirée Tullos | Eurek Alert!
Further information:
http://oregonstate.edu/ua/ncs/archives/2014/oct/rivers-recover-natural-conditions-quickly-following-dam-removal

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>