Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rivers are carbon processors, not inert pipelines

02.12.2008
Microorganisms in rivers and streams play a crucial role in the global carbon cycle that has not previously been considered. Freshwater ecologist Dr. Tom Battin, of the University of Vienna, told a COST ESF Frontiers of Science conference in October that our understanding of how rivers and streams deal with organic carbon has changed radically.

Microorganisms such as bacteria and single celled algae in rivers and streams decompose organic matter as it flows downstream. They convert the carbon it contains into carbon dioxide, which is then released to the atmosphere.

Recent estimates by Battin's team and others conclude there is a net flux, or outgassing, of carbon dioxide from the world's rivers and streams to the atmosphere of at least two-thirds to three-quarters of a gigatonne (Gt) of carbon per year. This flux has not been taken into account in the models of the global carbon cycle used to predict climate change.

"Surface water drainage networks perfuse and integrate the landscape, across the whole planet," says Battin, "but they are missing from all global carbon cycling, even from the IPCC (Intergovernmental Panel on Climate Change) reports. Rivers are just considered as inert pipelines, receiving organic carbon from Earth and transporting it to the ocean." This thinking, according to Battin, has changed radically in last few years.

He argues that the latest estimates of how much carbon is transferred to the atmosphere from rivers and streams are very conservative. "The actual outgassing of carbon dioxide is probably closer to 2 Gt of carbon per year," says Battin. "Our surface area estimates only consider larger streams and rivers, because it is very hard to estimate accurately the surface area of small streams. So small streams are excluded, although in terms of microbial activity, they are the most reactive in the network."

Two gigatonnes of carbon per year is close to half the estimated net primary production of the world's vegetation each year. Realising that this quantity of carbon may be delivered straight back to the atmosphere, rather than being taken to the ocean where some of it is removed by marine organisms and ends up in sediment, could have profound consequences for our understanding of the system.

In a disturbing development, Battin's team lab has recently found that engineered nanoparticles can significantly compromise the freshwater microbes involved in carbon cycling. "This finding is a real challenge to science," says Battin. "Engineered nanoparticles such as titanium dioxide are expected to increase in the environment, but it remains completely unknown how they might affect the functioning of ecosystems."

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/research-areas/life-earth-and-environmental-sciences/activities/lesc-cost-synergy.html

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>