Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

River samples shed light on the spread of potential 'superbugs'

17.02.2014
The spread of antibiotic-resistance to one of the most pristine locations in Asia is linked to the annual human pilgrimages to the region, new research has shown.

Experts from Newcastle University, UK, and the Indian Institute of Technology in Delhi (IIT-Delhi), sampled water and sediments at seven sites along the Upper Ganges River, in the foothills of the Himalayas.

They found that in May and June, when hundreds of thousands of visitors travel to Rishikesh and Haridwar to visit sacred sites, levels of resistance genes that lead to "superbugs" were found to be about 60 times greater than other times of the year.

Publishing their findings today in the journal Environmental Science and Technology, the team say it is important to protect people visiting and living at these sites while also making sure nothing interferes with these important religious practices.

They argue that preventing the spread of resistance genes that promote life-threating bacteria could be achieved by improving waste management at key pilgrimage sites.

"This isn't a local problem – it's a global one," explains Professor David Graham, an environmental engineer based at Newcastle University who has spent over ten years studying the environmental transmission of antibiotic resistance around the world.

"We studied pilgrimage areas because we suspected such locations would provide new information about resistance transmission via the environment. And it has – temporary visitors from outside the region overload local waste handling systems, which seasonally reduces water quality at the normally pristine sites.

"The specific resistance gene we studied, called blaNDM-1, causes extreme multi-resistance in many bacteria, therefore we must understand how this gene spreads in the environment.

"If we can stem the spread of such antibiotic resistant genes locally – possibly through improved sanitation and waste treatment - we have a better chance of limiting their spread on larger scales, creating global solutions by solving local problems."

Funded by the Engineering and Physical Sciences Research Council (EPSRC), the aim of the research was to understand how antibiotic resistance was transmitted due to a specific human activity. Local "hot-spots" of antibiotic resistance exist around the world, particularly densely-populated regions with inconsistent sanitation and poor water quality.

By comparing water quality of the Upper Ganges in February and again in June, the team showed that levels of blaNDM-1 were 20 times higher per capita during the pilgrimage season than at other times.

Monitoring levels of other contaminants in the water, the team showed that overloading of waste treatment facilities was likely to blame and that in many cases, untreated sewage was going straight into the river where the pilgrims bathe.

"The bugs and their genes are carried in people's guts," explains Professor Graham. "If untreated wastes get into the water supply, resistance potential in the wastes can pass to the next person and spiralling increases in resistance can occur."

Worldwide, concern is growing over the threat from bacteria that are resistant to the so-called "last resort" class of antibiotics known as Carbapenems, especially if resistance is acquired by aggressive pathogens.

Of particular concern is NDM-1, which is a protein that confers resistance in a range of bacteria. NDM-1 was first identified in New Delhi and coded by the resistant gene blaNDM-1.

Until recently, strains that carry blaNDM-1 were only found in clinical settings, but in 2008, blaNDM-1 positive strains were found in surface waters in Delhi. Since then, blaNDM-1 has been found elsewhere in the world, including new variants.

There are currently few antibiotics to combat bacteria that are resistant to Carbapenems and worldwide spread of blaNDM-1 is a growing concern.

Professor Graham, who is based in the School of Civil Engineering and Geosciences at Newcastle University, UK, said the team had planned to repeat their experiments last year, but the region was hit by massive floods in June and the experiments were abandoned.

The team has since returned to Rishikesh and Haridwar and hope their work will prompt public action to improve local sanitation, protecting these socially important sites. On a global scale, they want policymakers to recognise the importance of clean drinking water in our fight against antibiotic resistance.

"What humans have done by excess use of antibiotics is accelerate the rate of evolution, creating a world of resistant strains that never existed before" explains Graham.

"Through the overuse of antibiotics, contamination of drinking water and other factors, we have exponentially speeded-up the rate at which superbugs might develop.

"For example, when a new drug is developed, natural bacteria can rapidly adapt and become resistant; therefore very few new drugs are in the pipeline because it simply isn't cost-effective to make them.

"The only way we are going to win this fight is to understand all of the pathways that lead to antibiotic resistance. Clearly, improved antibiotic stewardship in medicine and agriculture is crucial, but understanding how resistance transmission occurs through our water supplies is also critical. We contend that improved waste management and water quality on a global scale is a key step."

David Graham | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>