Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

River flow by design: environmental flows support ecosystem services in rivers natural and novel

09.10.2014

The October 2014 issue of ESA Frontiers spotlights river management in the Anthropocene

Last spring, the Colorado River reached its delta for the first time in 16 years, flowing into Pacific Ocean at the Gulf of California after wetting 70 miles of long-dry channels through the Sonoran Desert.


Tides flow backwards up the dry channels of the Colorado River delta, as seen in an astronaut photo taken June 21, 2013. Prior to the construction of the Hoover Dam and other large water projects on the Colorado, the delta estuary supported a great diversity of species in 3,000 square miles (7,700 square kilometers) of braided channels and lagoons. Now, the riverbed often dries not far from the Arizona-Mexico border. In the spring of 2014, an experimental “pulse” of 105,000 acre-feet (130 million cubic meters) of water were released from the lowest dam on the river in an effort to recover some the lost services provided by the lower Colorado ecosystems. Credit, NASA.


The Elwha River pours through the remains of the Elwha Dam in Washington State’s Olympic National Park on October 23, 2011. The former reservoir beds have recovered quickly and salmon and steelhead have returned after demolition of the two dams on the river. Credit Kate Benkert, USFWS.

The planned 8-week burst of water from Mexico’s Morelos Dam on the Arizona-Mexico border was the culmination of years of diplomatic negotiations between the United States and Mexico and campaigning from scientists and conservation organizations. Now ecologists wait to see how the short drink of water will affect the parched landscape.

This year’s spring pulse held less than 1 percent of the volume of the Colorado’s annual spring floods before the construction of ten major dams and diversions to municipalities, industry, and agriculture. A return of the lush Colorado delta of the 1920s will not be possible.

But there is hope that periodic flows will bring back willow, mesquite, and cottonwood trees, revive insects and dormant crustaceans, give respite to birds migrating on the Pacific Flyway, and ease strains on fisheries in the Sea of Cortez (Gulf of California).

Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world

There are two primary ways to achieve “environmental flows” of water necessary to sustain river ecosystems, write Mike Acreman, of the UK’s Centre for Ecology & Hydrology, and colleagues in a review published this month in Frontiers in Ecology and the Environment: controlled releases like the recent experiment on the Colorado that are designed with specific objectives for ecology and ecosystem services in mind and hands-off policies that minimize or reverse alterations to the natural flow of the river.

For rivers like the Colorado, already much altered and bearing heavy demands from many different user groups, a “designer” approach is more practical than attempting to return the river closer to its natural, pre-development state, say the authors. Designers work to create a functional ecosystem or support ecosystem services under current conditions, rather than recreate a historical ecosystem.

Achieving ecological objectives requires planning beyond minimum flows and indicator species to encompass seasonal floods and slack flows and a holistic look at the plants, fish, fungi, birds and other life inhabiting the river, its banks and its marshes. Managers must plan to turn on the taps when ecosystems can capitalize on the flow, lest water releases do more harm than good. Several decades of applied research guided the planning for the engineered “spring flood” on the lower Colorado this year, which was timed for the germination of native trees.

Rebirth of the Elwha River

For rivers with fewer economic and social demands, restoration guided by historical records of the natural dynamics of the river can be an effective restoration strategy, say Acreman and colleagues. To preserve species and get the maximum value from ecosystem services, river systems need to fluctuate in natural rhythms of volume, velocity, and timing ( to put it very simplistically).

At the end of the twentieth century, Washington State decided that the water of the Elwha River would be most valuable flowing freely through Olympic National Park to the Pacific at the Strait of Juan de Fuca, supporting salmon, trout, clams, and tourism. Habitat and eroded coastline are recovering at an astonishing pace only one year after the demolition of two dams freed the river, as Noreen Parks reports for her news story “Rebirth of the Elwha River” in ESA Frontier’s October Dispatches.

Rivers of the Anthropocene?

Outside protected wilderness, the Elwha’s story may be more of an anomaly than a blueprint for future river restoration projects. As non-native species, land development, and climate change remodel river ecosystems, it is no longer easy to define what is “natural” for river systems. But heavily used, regulated, and altered rivers have ecological value.

“The future of freshwater biodiversity is inextricably linked to land and water infrastructure management,” writes N LeRoy Poff of Colorado State University in his guest editorial for ESA Frontiers, in which he contemplates whether rivers have changed so much that we need to rethink some of our conceptions about restoration.

“We are rapidly entering an era where restoration interventions will be guided less by statistical deviations from historical reference conditions and more by “process-based” understanding of organism–environment relationships,” he writes.

###

Citations:

Mike Acreman, Angela H Arthington, Matthew J Colloff, Carol Couch, Neville D Crossman, Fiona Dyer, Ian Overton, Carmel A Pollino, Michael J Stewardson, and William Young (2014). Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Frontiers in Ecology and the Environment 12: 466–473. http://dx.doi.org/10.1890/130134

Noreen Parks (2014). “Rebirth of the Elwha River.” Dispatches. Frontiers in Ecology and the Environment 12: 428–432. http://dx.doi.org/10.1890/1540-9295-12.8.428

N LeRoy Poff (2014). Rivers of the AnthropoceneFrontiers in Ecology and the Environment 12: 427–427.http://dx.doi.org/10.1890/1540-9295-12.8.427

ESA is the world’s largest community of professional ecologists and a trusted source of ecological knowledge, committed to advancing the understanding of life on Earth.  The 10,000 member Society publishes six journals and broadly shares ecological information through policy and media outreach and education initiatives. The Society’s Annual Meeting attracts over 3,000 attendees and features the most recent advances in ecological science. Visit the ESA website at http://www.esa.org.

Liza Lester | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>