Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising Carbon Dioxide in Atmosphere Also Speeds Carbon Loss From Forest Soils

13.07.2012
Elevated levels of atmospheric carbon dioxide accelerate carbon cycling and soil carbon loss in forests, new research led by an Indiana University biologist has found.

The new evidence supports an emerging view that although forests remove a substantial amount of carbon dioxide from the atmosphere, much of the carbon is being stored in living woody biomass rather than as dead organic matter in soils.

Richard P. Phillips, lead author on the paper and an assistant professor of biology in the IU College of Arts and Sciences, said that after nearly two decades of research on forest ecosystem responses to global change, some of the uncertainty has been lifted about how forests are storing carbon in the wake of rising carbon dioxide levels.

"It's been suggested that as trees take up more carbon dioxide from the atmosphere, a greater amount of carbon will go to roots and fungi to acquire nutrients, but our results show that little of this carbon accumulates in soil because the decomposition of root and fungal detritus is also increased," he said.

Carbon stored in soils, as opposed to in the wood of trees, is desirable from a management perspective in that soils are more stable over time, so carbon can be locked away for hundreds to thousands of years and not contribute to atmospheric carbon dioxide increases.

The research was conducted at the Duke Forest Free Air Carbon Dioxide Enrichment site in North Carolina. At this site, mature loblolly pine trees were exposed to increased levels of carbon dioxide for 14 years, making it one of the longest-running carbon dioxide enrichment experiments in the world. Researchers were able to calculate the age of the carbon cycling through the soil by growing roots and fungi into mesh bags that contained uniquely labeled soils. The soils were then analyzed for their organic composition.

The authors also report that nitrogen cycled faster in this forest as the demand for nutrients by trees and microbes became greater under elevated CO2.

"The growth of trees is limited by the availability of nitrogen at this site, so it makes sense that trees are using the 'extra' carbon taken up under elevated CO2 to prime microbes to release nitrogen bound up in organic matter," Phillips said. "What is surprising is that the trees seem to be getting much of their nitrogen by decomposing root and fungal detritus that is less than a year old."

The two-fold effects of microbial priming, where microbes are stimulated to decompose old soil organic matter via an increase in new carbon and other energy sources, and the faster turnover of recently fixed root and fungal carbon, are enough to explain the rapid carbon and nitrogen cycling that is occurring at the Duke Forest FACE site.

"We call it the RAMP hypothesis -- Rhizo-Accelerated Mineralization and Priming -- and it states that root-induced changes in the rates of microbial processing of carbon and nitrogen are key mediators of long-term ecosystem responses to global change," Phillips added.

"Most ecosystem models have limited representations of roots, and none of them include processes such as priming. Our results demonstrate that interactions between roots and soil microbes play an underappreciated role in determining how much carbon is stored and how fast nitrogen is cycled. So including these processes in models should lead to improved projections of long-term carbon storage in forests in response to global environmental change'" he said.

"Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2" -- by Phillips; IU and University of Gottingen (Germany) post-doctoral researcher Ina C. Meier; Emily S. Bernhardt of Duke University, A. Stuart Grandy and Kyle Wickings of the University of New Hampshire; and Adrien C. Finzi of Boston University -- was published July 9 in the online early addition of Ecology Letters. Free access to the research article will be available until October.

Funding for this work was provided by the U.S. Department of Agriculture and the U.S. Department of Energy. Phillips and his research team in March received a $398,000 National Science Foundation grant to fund testing of the RAMP hypothesis in mixed hardwood forests of Indiana.

To speak with Phillips or for more information, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu. Tweeting IU science news: @IndianaScience; blogging at Science at Work.

Steve Chaplin | Newswise Science News
Further information:
http://www.iu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>