Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice, Penn State nanotube blocks show promise for environmental cleanup, among many uses

17.04.2012
Researchers at Rice University and Penn State University have discovered that adding a dash of boron to carbon while creating nanotubes turns them into solid, spongy, reusable blocks that have an astounding ability to absorb oil spilled in water.

That’s one of a range of potential innovations for the material created in a single step. The team found for the first time that boron puts kinks and elbows into the nanotubes as they grow and promotes the formation of covalent bonds, which give the sponges their robust qualities.

The researchers, who collaborated with peers in labs around the nation and in Spain, Belgium and Japan, revealed their discovery in Nature’s online open-access journal Scientific Reports.

Lead author Daniel Hashim, a graduate student in the Rice lab of materials scientist Pulickel Ajayan, said the blocks are both superhydrophobic (they hate water, so they float really well) and oleophilic (they love oil). The nanosponges, which are more than 99 percent air, also conduct electricity and can easily be manipulated with magnets.

To demonstrate, Hashim dropped the sponge into a dish of water with used motor oil floating on top. The sponge soaked it up. He then put a match to the material, burned off the oil and returned the sponge to the water to absorb more. The robust sponge can be used repeatedly and stands up to abuse; he said a sample remained elastic after about 10,000 compressions in the lab. The sponge can also store the oil for later retrieval, he said.

“These samples can be made pretty large and can be easily scaled up,” said Hashim, holding a half-inch square block of billions of nanotubes. “They’re super-low density, so the available volume is large. That’s why the uptake of oil can be so high.” He said the sponges described in the paper can absorb more than a hundred times their weight in oil.

Ajayan, Rice’s Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, said multiwalled carbon nanotubes grown on a substrate via chemical vapor deposition usually stand up straight without any real connections to their neighbors. But the boron-introduced defects induced the nanotubes to bond at the atomic level, which tangled them into a complex network. Nanotube sponges with oil-absorbing potential have been made before, but this is the first time the covalent junctions between nanotubes in such solids have been convincingly demonstrated, he said.

“The interactions happen as they grow, and the material comes out of the furnace as a solid,” Ajayan said. “People have made nanotube solids via post-growth processing but without proper covalent connections. The advantage here is that the material is directly created during growth and comes out as a cross-linked porous network.

“It’s easy for us to make nano building blocks, but getting to the macroscale has been tough,” he said. “The nanotubes have to connect either through some clever way of creating topological defects, or they have to be welded together.”

When he was an undergraduate student of Ajayan’s at Rensselaer Polytechnic Institute, Hashim and his classmates discovered hints of a topological solution to the problem while participating in a National Science Foundation exchange program at the Institute of Scientific Research and Technology (IPICYT) in San Luis Potosí, Mexico. The paper’s co-author, Mauricio Terrones, a professor of physics, materials science and engineering at Penn State University with an appointment at Shinshu University, Japan, led a nanotechnology lab there.

“Our goal was to find a way to make three-dimensional networks of these carbon nanotubes that would form a macroscale fabric — a spongy block of nanotubes that would be big and thick enough to be used to clean up oil spills and to perform other tasks,” Terrones said. “We realized that the trick was adding boron — a chemical element next to carbon on the periodic table — because boron helps to trigger the interconnections of the material. To add the boron, we used very high temperatures and we then ‘knitted’ the substance into the nanotube fabric.”

The researchers have high hopes for the material’s environmental applications. “For oil spills, you would have to make large sheets of these or find a way to weld sheets together (a process Hashim continues to work on),” Ajayan said.

“Oil-spill remediation and environmental cleanup are just the beginning of how useful these new nanotube materials could be,” Terrones added. “For example, we could use these materials to make more efficient and lighter batteries. We could use them as scaffolds for bone-tissue regeneration. We even could impregnate the nanotube sponge with polymers to fabricate robust and light composites for the automobile and plane industries.”

Hashim suggested his nanosponges may also work as membranes for filtration.

“I don’t think anybody has created anything like this before,” Ajayan said. “It’s a spectacular nanostructured sponge.”

The paper’s co-authors are Narayanan Narayanan, Myung Gwan Hahm, Joseph Suttle and Robert Vajtai, all of Rice; Jose Romo-Herrera of the University of Vigo, Spain; David Cullen and Bobby Sumpter of Oak Ridge National Laboratory, Oak Ridge, Tenn.; Peter Lezzi and Vincent Meunier of Rensselaer Polytechnic Institute; Doug Kelkhoff of the University of Illinois at Urbana-Champaign; E. Muñoz-Sandoval of the Instituto de Microelectrónica de Madrid; Sabyasachi Ganguli and Ajit Roy of the Air Force Research Laboratory, Dayton, Ohio (on loan from IPICYT); David Smith of Arizona State University; and Humberto Terrones of Oak Ridge National Lab and the Université Catholique de Louvain, Belgium.

The National Science Foundation and the Air Force Office of Scientific Research Project MURI program for the synthesis and characterization of 3-D carbon nanotube solid networks supported the research.
Read the open access paper at http://www.nature.com/srep/2012/120413/srep00363/full/srep00363.html

Video: http://www.youtube.com/watch?v=OCKyMn-2edo

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>