Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resurrection Ecology: Bringing the Past to Life in the Lab

30.01.2009
A Michigan Technological University biologist discovers evidence of evolution in action when he revives the eggs of tiny aquatic animals.

You don't have to visit the Galapagos Islands to see evolution in action. Sometimes, all you have to do is hatch some eggs.

Layered in the sediments of rivers and lakes are the remains of generation upon generation of tiny animals known as zooplankton. In the 1990s, W. Charles Kerfoot, a professor of biological sciences at Michigan Technological University. was among a team of scientists studying these creatures in Germany when they made a startling discovery: The zooplankton weren't all dead. Or at least their eggs weren't.

"They should have died, but they didn't," Kerfoot said. "They revive, and we don't quite understand how it happens."

It doesn't take much to bring them back to life, either. "We just sieve them out of the sediment and wake them up in an incubator," he says. "Then we grow them up. We have entire populations from nearly 100 years ago."

A whole new field, dubbed by Kerfoot resurrection ecology, has emerged from those original discoveries. Its techniques allow scientists to study organisms from the past and compare them with their modern counterparts.

More recently, Kerfoot has done just that in Portage Lake, located in Michigan’s Upper Peninsula. He revived the eggs of a small, shrimp-like animal, Daphnia retrocurva, that he had found in sediment layers going back to the 1920s.

"We were testing a fundamental theory, Van Valen's Red Queen Hypothesis," Kerfoot explains. "It's the idea from 'Through the Looking Glass' that you must run just to remain in place."

Less colorfully, Leigh Van Valen of the University of Chicago postulated in 1973 that in an evolutionary system, it's not enough to rest on your laurels. Predators and their prey must constantly evolve in response to each other's changes or perish in the attempt.

In the case of D. retrocurva, Kerfoot wanted to know what, if any, changes it had made over the past 80 years. This was during a time when Portage Lake had undergone major changes, and those changes had big impacts on the predator populations that had D. retrocurva on the menu.

As it turned out, D. retrocurva, like Alice, followed the Red Queen's instructions. Eggs from different sediment layers grew up into adults with significantly different characteristics. In particular, their helmets and spines, which make them prickly to eat, changed in relation to predators over the 80-year period of the study.

Such microevolutionary adjustments had been observed in Daphnia populations, but resurrection ecology now allows scientists to bring the historical record to life.

"It's like having Rip Van Winkle wake up in your lab," Kerfoot says.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 120 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computing, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

W. Charles Kerfoot | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>