Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Predict Large 2009 Gulf of Mexico 'Dead Zone' Chesapeake Bay's Oxygen-starved Zone Likely to Shrink

22.06.2009
University of Michigan aquatic ecologist Donald Scavia and his colleagues say this year's Gulf of Mexico "dead zone" could be one of the largest on record, continuing a decades-long trend that threatens the health of a half-billion-dollar fishery.

University of Michigan aquatic ecologist Donald Scavia and his colleagues say this year's Gulf of Mexico "dead zone" could be one of the largest on record, continuing a decades-long trend that threatens the health of a half-billion-dollar fishery.

The scientists' latest forecast, released today, calls for a Gulf dead zone of between 7,450 and 8,456 square miles---an area about the size of New Jersey.

Most likely, this summer's Gulf dead zone will blanket about 7,980 square miles, roughly the same size as last year's zone, Scavia said. That would put the years 2009, 2008 and 2001 in a virtual tie for second place on the list of the largest Gulf dead zones.

It would also mean that the five largest Gulf dead zones on record have occurred since 2001. The biggest of these oxygen-starved, or hypoxic, regions developed in 2002 and measured 8,484 square miles.

"The growth of these dead zones is an ecological time bomb," said Scavia, a professor at the U-M School of Natural Resources and Environment and director of the U-M Graham Environmental Sustainability Institute.

"Without determined local, regional and national efforts to control them, we are putting major fisheries at risk," said Scavia, who also produces annual dead-zone forecasts for the Chesapeake Bay.

The Gulf dead zone forms each spring and summer off the Louisiana and Texas coast when oxygen levels drop too low to support most life in bottom and near-bottom waters.

The Gulf hypoxia research team is supported by the U.S. National Oceanic and Atmospheric Administration's Center for Sponsored Coastal Ocean Research and includes scientists from Louisiana State University and the Louisiana Universities Marine Consortium.

The forecast for a large 2009 Gulf hypoxic zone is based on above-normal flows in the Mississippi and Atchafalaya rivers this spring, which delivered large amounts of the nutrient nitrogen. In April and May, flows in the two rivers were 11 percent above average.

Additional flooding of the Mississippi since May could result in a dead zone that exceeds the upper limit of the forecast, the scientists said.

"The high water-volume flows, coupled with nearly triple the nitrogen concentrations in these rivers over the past 50 years from human activities, has led to a dramatic increase in the size of the dead zone," said Gene Turner, a lead forecast modeler at Louisiana State University.

Northeast of the Gulf, low water flows into the Chesapeake Bay shaped Scavia's 2009 forecast for that hypoxia zone.

The Bay's oxygen-starved zone is expected to shrink to between 0.7 and 1.8 cubic miles, with a "most likely" volume of 1.2 cubic miles---the lowest level since 2001 and third-lowest on record. The drop is largely due to a regional dry spell that lasted from January through April, Scavia said. Continued high flows in June, beyond the period used for the forecasts, suggest the actual size may be near the higher end of the forecast range.

"While it's encouraging to see that this year's Chesapeake Bay forecast calls for a significant drop in the extent of the dead zone, we must keep in mind that the anticipated reduction is due mainly to decreased precipitation and water runoff into the Bay," he said.

"The predicted 2009 dead-zone decline does not result from cutbacks in the use of nitrogen, which remains one of the key drivers of hypoxia in the Bay."

Farmland runoff containing fertilizers and livestock waste---some of it from as far away as the Corn Belt---is the main source of the nitrogen and phosphorus that cause the Gulf of Mexico dead zone.

Each year in late spring and summer, these nutrients make their way down the Mississippi River and into the Gulf, fueling explosive algae blooms there. When the algae die and sink, bottom-dwelling bacteria decompose the organic matter, consuming oxygen in the process. The result is an oxygen-starved region in bottom and near-bottom waters: the dead zone.

The same process occurs in the Chesapeake Bay, where nutrients in the Susquehanna River trigger the event. In both the Gulf and the Bay, fish, shrimp and crabs are forced to leave the hypoxic zone. Animals that cannot move perish.

The annual hypoxia forecasts helps coastal managers, policy makers, and the public better understand what causes dead zones. The models that generate the forecasts have been used to determine the nutrient-reduction targets required to reduce the size of the dead zone.

"As with weather forecasts, the Gulf forecast uses multiple models to predict the range of the expected size of the dead zone. The strong track record of these models reinforces our confidence in the link between excess nutrients from the Mississippi River and the dead zone," said Robert Magnien, director of NOAA's Center for Sponsored Coastal Ocean Research.

U.S. Geological Survey data on spring river flow and nutrient concentrations inform the computer models that produce the hypoxia forecasts.

The official size of the 2009 hypoxic zone will be announced following a NOAA-supported monitoring survey led by the Louisiana Universities Marine Consortium on July 18-26. In addition, NOAA's Southeast Area Monitoring and Assessment Program's (SEAMAP) is currently providing near real-time data on the hypoxic zone during a five-week summer fish survey in the northern Gulf of Mexico.

Related links:

Don Scavia's hypoxia forecasts: http://sitemaker.umich.edu/scavia/hypoxia_forecasts

Hypoxia in the Northern Gulf of Mexico
(Louisiana Universities Marine Consortium): http://www.gulfhypoxia.net/
NOAA/NCCOS Gulf of Mexico Dead Zone Research for Management: http://www.cop.noaa.gov/stressors/extremeevents/hab/features/hypoxiafs_report1206.html

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>