Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers on NOAA Mission Alter Course to Collect Sediment and Water Samples Near Deepwater Horizon Spill

10.05.2010
Scientists and technicians from the University of Mississippi and University of Southern Mississippi are part of a National Oceanic and Atmospheric Administration-sponsored and repurposed ocean mission that is collecting seafloor and water column data from areas near the oil spill in the Gulf of Mexico.

Researchers from the National Institute for Undersea Science and Technology sailed late Tuesday on a university research ship to obtain core sediment samples from the seafloor and water samples from the water column in areas near the Deepwater Horizon spill source. They are aboard the Pelican, operated by the Louisiana Universities Marine Consortium, which departed from Cocodrie, La.

The team collected its first samples at midday Wednesday and will continue doing so for several days before returning to port Sunday. The samples are expected to provide important information about the abundance of marine organisms and the presence of chemicals in ocean water and sediments – information for a baseline against which to measure change if those areas are affected by sinking oil.

The ship had been outfitted and ready to support a different NOAA-funded mission: to explore for deep-sea corals and hydrate communities associated with natural gas and oil seeps in the seafloor as well as mud volcanoes and shipwrecks of historical interest. That mission, which would have gone to an area in the Gulf not affected by the spill, was scrubbed in favor of gathering timely and much-needed data close to the spill's source.

"We plan to sample as close to the well head as is safe, reasonable and allowable," said Ray Highsmith, executive director for NIUST and principal investigator for both the original and revised mission. "We then plan to travel northwestward toward our long-term study site at MC-118, with stops for sampling, and then likely, sample northward from MC-118."

MC-118 stands for "Mississippi Canyon Block 118," an area about nine miles from the oil spill's source and the site of the Gulf of Mexico Consortium's Methane Hydrate Seafloor Observatory. In the seven years of the observatory's development, scientists have collected a wealth of geologic, physical, chemical and biological data describing the area – data that could be important in measuring changes there that stem from the spill.

With NOAA's agreement to change missions, scientists and technicians on the ship and ashore worked quickly to adjust staffing and to remove NIUST's two autonomous undersea vehicles from the ship. The AUVs would not have the appropriate sample-collecting capability onboard for the spill-related mission and would not work well in an oiled environment.

The research team brought aboard a large box corer used to take sediment samples from the seafloor and installed a large reel of cable to allow the corer to operate at depths equal to the spill source at 5,000 feet. An instrument called a CTD (Conductivity-Temperature-Depth) will measure the water's salinity, temperature, density and oxygen concentration at various water column depths, while bottles on the CTD obtain water samples.

The team includes chief scientist Arne Diercks, marine technicians Andy Gossett and Matt Lowe, and AUV engineer Max Woolsey, all based at the UM Field Station's undersea vehicle shop; scientist Vernon Asper and AUV engineer Karl MacLetchie both based at the USM facility at Stennis Space Center; and Luke McKay, a student at the University of North Carolina. Diercks and Woolsey work for USM but are stationed at the UM Field Station.

Before the ship departed, scientists and crew members received Hazardous Waste Operations and Emergency Response training as required by OSHA for those involved in the cleanup of hazardous substances. Oil is identified as a hazardous substance.

NIUST is a partnership of the University of Mississippi, University of Southern Mississippi and NOAA, funded by NOAA's Office of Ocean Exploration and Research. Samples from the mission will be studied by NOAA and by labs at the universities of Georgia and North Carolina and other members of the Hydrates Research Consortium.

NOAA works to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages the nation's coastal and marine resources. For more information, go to http://www.noaa.gov or on Facebook at http://www.facebook.com/noaa.lubchenco.

For more information on the Gulf of Mexico Hydrates Research Consortium, go to http://www.olemiss.edu/depts/mmri/programs/gulf_res.html. For more information on NIUST, go to http://www.niust.org/.

Fred Gorell | Newswise Science News
Further information:
http://www.olemiss.edu/newsdesk
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>