Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers on NOAA Mission Alter Course to Collect Sediment and Water Samples Near Deepwater Horizon Spill

10.05.2010
Scientists and technicians from the University of Mississippi and University of Southern Mississippi are part of a National Oceanic and Atmospheric Administration-sponsored and repurposed ocean mission that is collecting seafloor and water column data from areas near the oil spill in the Gulf of Mexico.

Researchers from the National Institute for Undersea Science and Technology sailed late Tuesday on a university research ship to obtain core sediment samples from the seafloor and water samples from the water column in areas near the Deepwater Horizon spill source. They are aboard the Pelican, operated by the Louisiana Universities Marine Consortium, which departed from Cocodrie, La.

The team collected its first samples at midday Wednesday and will continue doing so for several days before returning to port Sunday. The samples are expected to provide important information about the abundance of marine organisms and the presence of chemicals in ocean water and sediments – information for a baseline against which to measure change if those areas are affected by sinking oil.

The ship had been outfitted and ready to support a different NOAA-funded mission: to explore for deep-sea corals and hydrate communities associated with natural gas and oil seeps in the seafloor as well as mud volcanoes and shipwrecks of historical interest. That mission, which would have gone to an area in the Gulf not affected by the spill, was scrubbed in favor of gathering timely and much-needed data close to the spill's source.

"We plan to sample as close to the well head as is safe, reasonable and allowable," said Ray Highsmith, executive director for NIUST and principal investigator for both the original and revised mission. "We then plan to travel northwestward toward our long-term study site at MC-118, with stops for sampling, and then likely, sample northward from MC-118."

MC-118 stands for "Mississippi Canyon Block 118," an area about nine miles from the oil spill's source and the site of the Gulf of Mexico Consortium's Methane Hydrate Seafloor Observatory. In the seven years of the observatory's development, scientists have collected a wealth of geologic, physical, chemical and biological data describing the area – data that could be important in measuring changes there that stem from the spill.

With NOAA's agreement to change missions, scientists and technicians on the ship and ashore worked quickly to adjust staffing and to remove NIUST's two autonomous undersea vehicles from the ship. The AUVs would not have the appropriate sample-collecting capability onboard for the spill-related mission and would not work well in an oiled environment.

The research team brought aboard a large box corer used to take sediment samples from the seafloor and installed a large reel of cable to allow the corer to operate at depths equal to the spill source at 5,000 feet. An instrument called a CTD (Conductivity-Temperature-Depth) will measure the water's salinity, temperature, density and oxygen concentration at various water column depths, while bottles on the CTD obtain water samples.

The team includes chief scientist Arne Diercks, marine technicians Andy Gossett and Matt Lowe, and AUV engineer Max Woolsey, all based at the UM Field Station's undersea vehicle shop; scientist Vernon Asper and AUV engineer Karl MacLetchie both based at the USM facility at Stennis Space Center; and Luke McKay, a student at the University of North Carolina. Diercks and Woolsey work for USM but are stationed at the UM Field Station.

Before the ship departed, scientists and crew members received Hazardous Waste Operations and Emergency Response training as required by OSHA for those involved in the cleanup of hazardous substances. Oil is identified as a hazardous substance.

NIUST is a partnership of the University of Mississippi, University of Southern Mississippi and NOAA, funded by NOAA's Office of Ocean Exploration and Research. Samples from the mission will be studied by NOAA and by labs at the universities of Georgia and North Carolina and other members of the Hydrates Research Consortium.

NOAA works to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages the nation's coastal and marine resources. For more information, go to http://www.noaa.gov or on Facebook at http://www.facebook.com/noaa.lubchenco.

For more information on the Gulf of Mexico Hydrates Research Consortium, go to http://www.olemiss.edu/depts/mmri/programs/gulf_res.html. For more information on NIUST, go to http://www.niust.org/.

Fred Gorell | Newswise Science News
Further information:
http://www.olemiss.edu/newsdesk
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>