Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers on NOAA Mission Alter Course to Collect Sediment and Water Samples Near Deepwater Horizon Spill

10.05.2010
Scientists and technicians from the University of Mississippi and University of Southern Mississippi are part of a National Oceanic and Atmospheric Administration-sponsored and repurposed ocean mission that is collecting seafloor and water column data from areas near the oil spill in the Gulf of Mexico.

Researchers from the National Institute for Undersea Science and Technology sailed late Tuesday on a university research ship to obtain core sediment samples from the seafloor and water samples from the water column in areas near the Deepwater Horizon spill source. They are aboard the Pelican, operated by the Louisiana Universities Marine Consortium, which departed from Cocodrie, La.

The team collected its first samples at midday Wednesday and will continue doing so for several days before returning to port Sunday. The samples are expected to provide important information about the abundance of marine organisms and the presence of chemicals in ocean water and sediments – information for a baseline against which to measure change if those areas are affected by sinking oil.

The ship had been outfitted and ready to support a different NOAA-funded mission: to explore for deep-sea corals and hydrate communities associated with natural gas and oil seeps in the seafloor as well as mud volcanoes and shipwrecks of historical interest. That mission, which would have gone to an area in the Gulf not affected by the spill, was scrubbed in favor of gathering timely and much-needed data close to the spill's source.

"We plan to sample as close to the well head as is safe, reasonable and allowable," said Ray Highsmith, executive director for NIUST and principal investigator for both the original and revised mission. "We then plan to travel northwestward toward our long-term study site at MC-118, with stops for sampling, and then likely, sample northward from MC-118."

MC-118 stands for "Mississippi Canyon Block 118," an area about nine miles from the oil spill's source and the site of the Gulf of Mexico Consortium's Methane Hydrate Seafloor Observatory. In the seven years of the observatory's development, scientists have collected a wealth of geologic, physical, chemical and biological data describing the area – data that could be important in measuring changes there that stem from the spill.

With NOAA's agreement to change missions, scientists and technicians on the ship and ashore worked quickly to adjust staffing and to remove NIUST's two autonomous undersea vehicles from the ship. The AUVs would not have the appropriate sample-collecting capability onboard for the spill-related mission and would not work well in an oiled environment.

The research team brought aboard a large box corer used to take sediment samples from the seafloor and installed a large reel of cable to allow the corer to operate at depths equal to the spill source at 5,000 feet. An instrument called a CTD (Conductivity-Temperature-Depth) will measure the water's salinity, temperature, density and oxygen concentration at various water column depths, while bottles on the CTD obtain water samples.

The team includes chief scientist Arne Diercks, marine technicians Andy Gossett and Matt Lowe, and AUV engineer Max Woolsey, all based at the UM Field Station's undersea vehicle shop; scientist Vernon Asper and AUV engineer Karl MacLetchie both based at the USM facility at Stennis Space Center; and Luke McKay, a student at the University of North Carolina. Diercks and Woolsey work for USM but are stationed at the UM Field Station.

Before the ship departed, scientists and crew members received Hazardous Waste Operations and Emergency Response training as required by OSHA for those involved in the cleanup of hazardous substances. Oil is identified as a hazardous substance.

NIUST is a partnership of the University of Mississippi, University of Southern Mississippi and NOAA, funded by NOAA's Office of Ocean Exploration and Research. Samples from the mission will be studied by NOAA and by labs at the universities of Georgia and North Carolina and other members of the Hydrates Research Consortium.

NOAA works to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages the nation's coastal and marine resources. For more information, go to http://www.noaa.gov or on Facebook at http://www.facebook.com/noaa.lubchenco.

For more information on the Gulf of Mexico Hydrates Research Consortium, go to http://www.olemiss.edu/depts/mmri/programs/gulf_res.html. For more information on NIUST, go to http://www.niust.org/.

Fred Gorell | Newswise Science News
Further information:
http://www.olemiss.edu/newsdesk
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>