Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers on NOAA Mission Alter Course to Collect Sediment and Water Samples Near Deepwater Horizon Spill

10.05.2010
Scientists and technicians from the University of Mississippi and University of Southern Mississippi are part of a National Oceanic and Atmospheric Administration-sponsored and repurposed ocean mission that is collecting seafloor and water column data from areas near the oil spill in the Gulf of Mexico.

Researchers from the National Institute for Undersea Science and Technology sailed late Tuesday on a university research ship to obtain core sediment samples from the seafloor and water samples from the water column in areas near the Deepwater Horizon spill source. They are aboard the Pelican, operated by the Louisiana Universities Marine Consortium, which departed from Cocodrie, La.

The team collected its first samples at midday Wednesday and will continue doing so for several days before returning to port Sunday. The samples are expected to provide important information about the abundance of marine organisms and the presence of chemicals in ocean water and sediments – information for a baseline against which to measure change if those areas are affected by sinking oil.

The ship had been outfitted and ready to support a different NOAA-funded mission: to explore for deep-sea corals and hydrate communities associated with natural gas and oil seeps in the seafloor as well as mud volcanoes and shipwrecks of historical interest. That mission, which would have gone to an area in the Gulf not affected by the spill, was scrubbed in favor of gathering timely and much-needed data close to the spill's source.

"We plan to sample as close to the well head as is safe, reasonable and allowable," said Ray Highsmith, executive director for NIUST and principal investigator for both the original and revised mission. "We then plan to travel northwestward toward our long-term study site at MC-118, with stops for sampling, and then likely, sample northward from MC-118."

MC-118 stands for "Mississippi Canyon Block 118," an area about nine miles from the oil spill's source and the site of the Gulf of Mexico Consortium's Methane Hydrate Seafloor Observatory. In the seven years of the observatory's development, scientists have collected a wealth of geologic, physical, chemical and biological data describing the area – data that could be important in measuring changes there that stem from the spill.

With NOAA's agreement to change missions, scientists and technicians on the ship and ashore worked quickly to adjust staffing and to remove NIUST's two autonomous undersea vehicles from the ship. The AUVs would not have the appropriate sample-collecting capability onboard for the spill-related mission and would not work well in an oiled environment.

The research team brought aboard a large box corer used to take sediment samples from the seafloor and installed a large reel of cable to allow the corer to operate at depths equal to the spill source at 5,000 feet. An instrument called a CTD (Conductivity-Temperature-Depth) will measure the water's salinity, temperature, density and oxygen concentration at various water column depths, while bottles on the CTD obtain water samples.

The team includes chief scientist Arne Diercks, marine technicians Andy Gossett and Matt Lowe, and AUV engineer Max Woolsey, all based at the UM Field Station's undersea vehicle shop; scientist Vernon Asper and AUV engineer Karl MacLetchie both based at the USM facility at Stennis Space Center; and Luke McKay, a student at the University of North Carolina. Diercks and Woolsey work for USM but are stationed at the UM Field Station.

Before the ship departed, scientists and crew members received Hazardous Waste Operations and Emergency Response training as required by OSHA for those involved in the cleanup of hazardous substances. Oil is identified as a hazardous substance.

NIUST is a partnership of the University of Mississippi, University of Southern Mississippi and NOAA, funded by NOAA's Office of Ocean Exploration and Research. Samples from the mission will be studied by NOAA and by labs at the universities of Georgia and North Carolina and other members of the Hydrates Research Consortium.

NOAA works to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages the nation's coastal and marine resources. For more information, go to http://www.noaa.gov or on Facebook at http://www.facebook.com/noaa.lubchenco.

For more information on the Gulf of Mexico Hydrates Research Consortium, go to http://www.olemiss.edu/depts/mmri/programs/gulf_res.html. For more information on NIUST, go to http://www.niust.org/.

Fred Gorell | Newswise Science News
Further information:
http://www.olemiss.edu/newsdesk
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>