Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers move endangered mussels to save them

12.09.2013
Researchers have transported two endangered freshwater mussel species from Pennsylvania to Illinois in an attempt to re-establish their populations in the western part of the Ohio River Basin.

The team of biologists, led by Jeremy Tiemann, of the Illinois Natural History Survey (INHS), traveled to the site of a bridge-replacement project on Pennsylvania’s Allegheny River to collect northern riffleshell (Epioblasma rangiana) and clubshell (Pleurobema clava) mussels. The INHS is a division of the Prairie Research Institute at the University of Illinois.


Photo courtesy: Jeremy Tiemann

A team of biologists, headed by Jeremy Tiemann of the Illinois Natural History Survey, transported two endangered freshwater mussel species, the northern riffleshell (Epioblasma rangiana) and clubshell (Pleurobema clava, pictured), from Pennsylvania to Illinois.

The two mussel species historically had inhabited the Ohio River Basin, an area that stretches from Illinois to Pennsylvania and New York to Kentucky. The 2- to 3-inch-long northern riffleshells and their larger clubshell counterparts make their homes three or more inches beneath the surface of the gravel layer they live in, Tiemann said.

There are more than 30,000 individual mussels of these species living under Pennsylvania’s Hunter Station Bridge. The bridge-replacement project brings with it the potential for huge losses of the already endangered species, he said.

Mussels reproduce by attaching their juveniles to certain species of fish, so finding a suitable habitat for them can be a challenge. The northern riffleshell was “last seen alive in Illinois about a hundred years ago,” Tiemann said. There are sites on the Vermillion River in Illinois that serve as the perfect backdrop for the re-establishment of populations in the species’ historical range, he said.

“It is a win-win situation for everybody,” Tiemann said. “We save the mussels and get a new population here in Illinois.”

The team collected the mussels over a two-day period in late August, and then brought them to their lab in Illinois to be tagged with a “microchip similar to what you put in your dog or cat. (It’s) the size of a large grain of rice,” Tiemann said.

Last year, the group collected and transported 1,000 northern riffleshells and 200 clubshells. The team has seen an 80 percent survivorship within this group.

This year, they transported 750 clubshell and 250 northern riffleshell mussels.

The benefit of the project stretches beyond simply removing these species from the endangered list. Mussels have “their own little niche within the ecosystem and food webs” of their habitats, Tiemann said. Their shells provide a home for many fish and insects. They also are effective biofilters that help clean the water.

“A group of mussels in a tight area can filter as much water as a treatment plant,” Tiemann said. “Hopefully we will one day be able to pinpoint the exact monetary value of these Vermillion River mussels so policymakers can translate the science into dollars.”

For now, Tiemann is happy to see the restoration making waves among enthusiastic farmers, government wildlife agencies and concerned citizens.

“A lot of people like to be outside, and this is one thing we can do to restore this scenic river to its pre-settlement condition,” Tiemann said.

Editor's note:
To reach Jeremy Tiemann, call 217-244-4594; email jtiemann@illinois.edu

Chelsey B. Coombs | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>