Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make Key Observation about Animal Behavior Patterns

30.03.2009
Northeastern University and MIT researchers have observed—for the first time—the origin of a mass gathering and the subsequent migration of hundreds of millions of animals.

Utilizing a new imaging technology invented by the researchers, they were able to instantaneously image and continuously monitor entire shoals of fish containing hundreds of millions of individuals stretching for tens of kilometers off Georges Bank near Boston.

They found that once large shoals of Atlantic herring reach a critical population density, a “chain reaction” triggers the synchronized movement of millions of individual fish over a large area. The phenomenon is akin to a human “wave” moving in a sports stadium. They also observed that the fish “commute” to the shallower waters of the bank, where they spawn in the darkness, then return to deeper water and disband the following morning.

The findings, published in the latest issue of Science, confirm general theories about the behavior of large groups of animals that, until now, had not been verified in nature. Previously, these theories for diverse animal groups, ranging from flocks of birds to swarms of locusts, had only been tested with computer simulations and laboratory experiments.

“As far as we know, this is the first time we’ve quantified this behavior in nature and over such a huge ecosystem,” said Nicholas C. Makris, professor of mechanical and ocean engineering at MIT, who co-led this project with Northeastern professor Purnima Ratilal.

As part of the project, two research vessels were equipped with Ocean Acoustic Waveguide Remote Sensing (OAWRS) technology, developed by professors Makris and Ratilal. Both OAWRS and conventional sensing methods depend on acoustics to locate objects by bouncing sound waves off of them. OAWRS, however, captures images of a 100 kilometer diameter area every 75 seconds, providing far more complete coverage of fish population and behavior than conventional methods. In addition, OAWRS does so at a lower frequency than conventional methods, which allows the sound to travel much greater distances with lower intensity and still provide useful information.

"After analyzing the data carefully during the initial days at sea, I noticed what seemed to be a daily pattern of fish shoal formation,” said Ratilal, assistant professor of electrical and computer engineering at Northeastern. “When I predicted what would happen the following day, and it turned out to be right, we knew we had discovered something really important."

Makris and Ratilal see potential in using OAWRS to better monitor—and conserve—fish populations. Large oceanic fish shoals provide vital links in the ocean and human food chain, they explained, but their sheer size makes it difficult to collect information using conventional methods.

Northeastern PhD. students Mark Andrews and Zheng Gong contributed to this research. Additional collaborators include J. Michael Jech of the Northeast Fisheries Science Center, Olav Rune Godoe of the Institute of Marine Research in Norway, as well as others from MIT, Northeastern and the Southeast Fisheries Science Center. The project was sponsored by the National Oceanographic Partnership Program, the Office of Naval Research and the Alfred P. Sloan Foundation, and is a contribution to the Census of Marine Life.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>