Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Make Key Observation about Animal Behavior Patterns

Northeastern University and MIT researchers have observed—for the first time—the origin of a mass gathering and the subsequent migration of hundreds of millions of animals.

Utilizing a new imaging technology invented by the researchers, they were able to instantaneously image and continuously monitor entire shoals of fish containing hundreds of millions of individuals stretching for tens of kilometers off Georges Bank near Boston.

They found that once large shoals of Atlantic herring reach a critical population density, a “chain reaction” triggers the synchronized movement of millions of individual fish over a large area. The phenomenon is akin to a human “wave” moving in a sports stadium. They also observed that the fish “commute” to the shallower waters of the bank, where they spawn in the darkness, then return to deeper water and disband the following morning.

The findings, published in the latest issue of Science, confirm general theories about the behavior of large groups of animals that, until now, had not been verified in nature. Previously, these theories for diverse animal groups, ranging from flocks of birds to swarms of locusts, had only been tested with computer simulations and laboratory experiments.

“As far as we know, this is the first time we’ve quantified this behavior in nature and over such a huge ecosystem,” said Nicholas C. Makris, professor of mechanical and ocean engineering at MIT, who co-led this project with Northeastern professor Purnima Ratilal.

As part of the project, two research vessels were equipped with Ocean Acoustic Waveguide Remote Sensing (OAWRS) technology, developed by professors Makris and Ratilal. Both OAWRS and conventional sensing methods depend on acoustics to locate objects by bouncing sound waves off of them. OAWRS, however, captures images of a 100 kilometer diameter area every 75 seconds, providing far more complete coverage of fish population and behavior than conventional methods. In addition, OAWRS does so at a lower frequency than conventional methods, which allows the sound to travel much greater distances with lower intensity and still provide useful information.

"After analyzing the data carefully during the initial days at sea, I noticed what seemed to be a daily pattern of fish shoal formation,” said Ratilal, assistant professor of electrical and computer engineering at Northeastern. “When I predicted what would happen the following day, and it turned out to be right, we knew we had discovered something really important."

Makris and Ratilal see potential in using OAWRS to better monitor—and conserve—fish populations. Large oceanic fish shoals provide vital links in the ocean and human food chain, they explained, but their sheer size makes it difficult to collect information using conventional methods.

Northeastern PhD. students Mark Andrews and Zheng Gong contributed to this research. Additional collaborators include J. Michael Jech of the Northeast Fisheries Science Center, Olav Rune Godoe of the Institute of Marine Research in Norway, as well as others from MIT, Northeastern and the Southeast Fisheries Science Center. The project was sponsored by the National Oceanographic Partnership Program, the Office of Naval Research and the Alfred P. Sloan Foundation, and is a contribution to the Census of Marine Life.

Jenny Eriksen | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>