Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make Key Observation about Animal Behavior Patterns

30.03.2009
Northeastern University and MIT researchers have observed—for the first time—the origin of a mass gathering and the subsequent migration of hundreds of millions of animals.

Utilizing a new imaging technology invented by the researchers, they were able to instantaneously image and continuously monitor entire shoals of fish containing hundreds of millions of individuals stretching for tens of kilometers off Georges Bank near Boston.

They found that once large shoals of Atlantic herring reach a critical population density, a “chain reaction” triggers the synchronized movement of millions of individual fish over a large area. The phenomenon is akin to a human “wave” moving in a sports stadium. They also observed that the fish “commute” to the shallower waters of the bank, where they spawn in the darkness, then return to deeper water and disband the following morning.

The findings, published in the latest issue of Science, confirm general theories about the behavior of large groups of animals that, until now, had not been verified in nature. Previously, these theories for diverse animal groups, ranging from flocks of birds to swarms of locusts, had only been tested with computer simulations and laboratory experiments.

“As far as we know, this is the first time we’ve quantified this behavior in nature and over such a huge ecosystem,” said Nicholas C. Makris, professor of mechanical and ocean engineering at MIT, who co-led this project with Northeastern professor Purnima Ratilal.

As part of the project, two research vessels were equipped with Ocean Acoustic Waveguide Remote Sensing (OAWRS) technology, developed by professors Makris and Ratilal. Both OAWRS and conventional sensing methods depend on acoustics to locate objects by bouncing sound waves off of them. OAWRS, however, captures images of a 100 kilometer diameter area every 75 seconds, providing far more complete coverage of fish population and behavior than conventional methods. In addition, OAWRS does so at a lower frequency than conventional methods, which allows the sound to travel much greater distances with lower intensity and still provide useful information.

"After analyzing the data carefully during the initial days at sea, I noticed what seemed to be a daily pattern of fish shoal formation,” said Ratilal, assistant professor of electrical and computer engineering at Northeastern. “When I predicted what would happen the following day, and it turned out to be right, we knew we had discovered something really important."

Makris and Ratilal see potential in using OAWRS to better monitor—and conserve—fish populations. Large oceanic fish shoals provide vital links in the ocean and human food chain, they explained, but their sheer size makes it difficult to collect information using conventional methods.

Northeastern PhD. students Mark Andrews and Zheng Gong contributed to this research. Additional collaborators include J. Michael Jech of the Northeast Fisheries Science Center, Olav Rune Godoe of the Institute of Marine Research in Norway, as well as others from MIT, Northeastern and the Southeast Fisheries Science Center. The project was sponsored by the National Oceanographic Partnership Program, the Office of Naval Research and the Alfred P. Sloan Foundation, and is a contribution to the Census of Marine Life.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>