Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make Key Observation about Animal Behavior Patterns

30.03.2009
Northeastern University and MIT researchers have observed—for the first time—the origin of a mass gathering and the subsequent migration of hundreds of millions of animals.

Utilizing a new imaging technology invented by the researchers, they were able to instantaneously image and continuously monitor entire shoals of fish containing hundreds of millions of individuals stretching for tens of kilometers off Georges Bank near Boston.

They found that once large shoals of Atlantic herring reach a critical population density, a “chain reaction” triggers the synchronized movement of millions of individual fish over a large area. The phenomenon is akin to a human “wave” moving in a sports stadium. They also observed that the fish “commute” to the shallower waters of the bank, where they spawn in the darkness, then return to deeper water and disband the following morning.

The findings, published in the latest issue of Science, confirm general theories about the behavior of large groups of animals that, until now, had not been verified in nature. Previously, these theories for diverse animal groups, ranging from flocks of birds to swarms of locusts, had only been tested with computer simulations and laboratory experiments.

“As far as we know, this is the first time we’ve quantified this behavior in nature and over such a huge ecosystem,” said Nicholas C. Makris, professor of mechanical and ocean engineering at MIT, who co-led this project with Northeastern professor Purnima Ratilal.

As part of the project, two research vessels were equipped with Ocean Acoustic Waveguide Remote Sensing (OAWRS) technology, developed by professors Makris and Ratilal. Both OAWRS and conventional sensing methods depend on acoustics to locate objects by bouncing sound waves off of them. OAWRS, however, captures images of a 100 kilometer diameter area every 75 seconds, providing far more complete coverage of fish population and behavior than conventional methods. In addition, OAWRS does so at a lower frequency than conventional methods, which allows the sound to travel much greater distances with lower intensity and still provide useful information.

"After analyzing the data carefully during the initial days at sea, I noticed what seemed to be a daily pattern of fish shoal formation,” said Ratilal, assistant professor of electrical and computer engineering at Northeastern. “When I predicted what would happen the following day, and it turned out to be right, we knew we had discovered something really important."

Makris and Ratilal see potential in using OAWRS to better monitor—and conserve—fish populations. Large oceanic fish shoals provide vital links in the ocean and human food chain, they explained, but their sheer size makes it difficult to collect information using conventional methods.

Northeastern PhD. students Mark Andrews and Zheng Gong contributed to this research. Additional collaborators include J. Michael Jech of the Northeast Fisheries Science Center, Olav Rune Godoe of the Institute of Marine Research in Norway, as well as others from MIT, Northeastern and the Southeast Fisheries Science Center. The project was sponsored by the National Oceanographic Partnership Program, the Office of Naval Research and the Alfred P. Sloan Foundation, and is a contribution to the Census of Marine Life.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>