Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Explore the Geometry of Cleaning Up the Gulf Coast

20.08.2010
Virginia Tech College of Engineering researchers have received a $60,000 one-year National Science Foundation grant to study how naturally occurring microbes can best be used to eat away remaining crude oil spilled in the Gulf of Mexico. Their choice of weapon: Geometry.

Fueled by oxygen, naturally occurring bacteria can slowly destroy blobs and slicks of crude oil without the use of additional chemicals. Faculty researchers at Virginia Tech’s Charles E. Via Jr. Department of Civil and Environmental Engineering (http://www.cee.vt.edu/) (CEE) hope to determine if the shape of crude oil remnant – be it a flat syrupy sheet or a tar ball – can affect deterioration rates.

The researchers also will study how a lack of oxygen can hinder microbe growth, and how carbon leaching from dissipating oil can further fuel these oil-eating microbes, a two-step process known as mass transfer and biodegradation. Remaining toxic chemicals left behind by the spill also will be studied at Virginia Tech labs in Blacksburg.

“This research has the potential for improving our understanding of the long-term persistence of chemicals in the environment. In terms of clean up, there are many problems left to solve regarding the most toxic and recalcitrant pollutants that dissolve out of liquid sources, not just associated with oil spills, but at industrial sites, etc.,” says Mark Widdowson, professor and assistant department head of CEE. He is spearheading the research with Amy Pruden-Bagchi, associate professor of CEE.

Widdowson and Pruden-Bagchi stipulate that oil remnants that have the geometric shape of flat surfaces will dissipate slower compared to tar balls that can be “surrounded” by microorganisms. “Each has a unique geometry where the rate of dissolution is controlled by exposed surface area,” Widdowson and Pruden-Bagchi wrote in their grant proposal. “For oil layers, aerobic biodegradation on the underside of the deposit will be severely limited by oxygen availability.”

More than 200 million gallons of oil is estimated to have spilled into the Gulf after the April 20 blowout at BP’s Deepwater Horizon, an incident which also killed 11 people. More than 500 miles of shoreline is affected along the Gulf Coast, which “underscores the urgent need for research that will lead to accurate predictions of the long-term persistence of the crude oil in coastal environments,” the researchers wrote in their proposal. Unknown is how the various chemicals used to more quickly disperse massive bodies of crude oil will affect future oxygen levels. If oxygen levels remain low in high-chemical-use areas, microbes likely will not grow fast.

Remaining crude oil buried by sand, debris or grasses can remain for years. “There are some reports in Alaska, where you can dig a few inches in the ground and find oil left over from the Exxon Valdez spill,” said Pruden-Bagchi of the 1989 incident that spilled anywhere from 11 million to 32 million gallons – numbers vary by source -- of crude oil in the Prince William Sound. “Limited oxygen is a big part of the problem.”

Before the grant was officially awarded, Widdowson and Pruden-Bagchi led a student team to the lower coast of Alabama to collect samples in late July. Additional funding for this trip and the study came from two Virginia Tech research programs, the Institute for Critical Technology and Applied Science (ICTAS) and the Institute for Society Culture and the Environment (ISCE).

In Alabama, along oxygen-rich beaches, they found no large oil slicks or massive tar balls, but smaller, raison-shaped chunks of oil with the texture of soft licorice. In oxygen-poor wetland areas, thick, sludgy raisin-shaped balls of oil are still being reported. The researchers already have received assistance from the U.S. Coast Guard and the Environmental Protection Agency in surveying and sampling the crude oil.

“Most of the remaining oil will end up in the marshes and on the sea floor, and may not be obvious as it is on the beaches,” said Pruden-Bagchi. Future trips to the Gulf coast are planned.

Widdowson and Pruden-Bagchi are focused on sharing the information with those handling the Gulf Coast disaster and future oil spills, but also plan to submit their findings for publication in peer-reviewed scientific journals. Pruden-Bagchi also conducted an oil spill clean-up activity for regional middle school students through Virginia Tech’s Imagination summer camp, held in July.

Both lead researchers are familiar with the Gulf Coast. Pruden-Bagchi’s spouse has relatives conducting research at Mobile’s University of South Alabama, while Widdowson has lived in Alabama. “My wife and I both attended Auburn University and occasionally managed to slip away to the Gulf beaches, including Gulf Shores. We were attracted by the beauty of the white sand and crystal clear ocean.”

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 6,000 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Steven Mackay | Newswise Science News
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>