Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Explore the Geometry of Cleaning Up the Gulf Coast

Virginia Tech College of Engineering researchers have received a $60,000 one-year National Science Foundation grant to study how naturally occurring microbes can best be used to eat away remaining crude oil spilled in the Gulf of Mexico. Their choice of weapon: Geometry.

Fueled by oxygen, naturally occurring bacteria can slowly destroy blobs and slicks of crude oil without the use of additional chemicals. Faculty researchers at Virginia Tech’s Charles E. Via Jr. Department of Civil and Environmental Engineering ( (CEE) hope to determine if the shape of crude oil remnant – be it a flat syrupy sheet or a tar ball – can affect deterioration rates.

The researchers also will study how a lack of oxygen can hinder microbe growth, and how carbon leaching from dissipating oil can further fuel these oil-eating microbes, a two-step process known as mass transfer and biodegradation. Remaining toxic chemicals left behind by the spill also will be studied at Virginia Tech labs in Blacksburg.

“This research has the potential for improving our understanding of the long-term persistence of chemicals in the environment. In terms of clean up, there are many problems left to solve regarding the most toxic and recalcitrant pollutants that dissolve out of liquid sources, not just associated with oil spills, but at industrial sites, etc.,” says Mark Widdowson, professor and assistant department head of CEE. He is spearheading the research with Amy Pruden-Bagchi, associate professor of CEE.

Widdowson and Pruden-Bagchi stipulate that oil remnants that have the geometric shape of flat surfaces will dissipate slower compared to tar balls that can be “surrounded” by microorganisms. “Each has a unique geometry where the rate of dissolution is controlled by exposed surface area,” Widdowson and Pruden-Bagchi wrote in their grant proposal. “For oil layers, aerobic biodegradation on the underside of the deposit will be severely limited by oxygen availability.”

More than 200 million gallons of oil is estimated to have spilled into the Gulf after the April 20 blowout at BP’s Deepwater Horizon, an incident which also killed 11 people. More than 500 miles of shoreline is affected along the Gulf Coast, which “underscores the urgent need for research that will lead to accurate predictions of the long-term persistence of the crude oil in coastal environments,” the researchers wrote in their proposal. Unknown is how the various chemicals used to more quickly disperse massive bodies of crude oil will affect future oxygen levels. If oxygen levels remain low in high-chemical-use areas, microbes likely will not grow fast.

Remaining crude oil buried by sand, debris or grasses can remain for years. “There are some reports in Alaska, where you can dig a few inches in the ground and find oil left over from the Exxon Valdez spill,” said Pruden-Bagchi of the 1989 incident that spilled anywhere from 11 million to 32 million gallons – numbers vary by source -- of crude oil in the Prince William Sound. “Limited oxygen is a big part of the problem.”

Before the grant was officially awarded, Widdowson and Pruden-Bagchi led a student team to the lower coast of Alabama to collect samples in late July. Additional funding for this trip and the study came from two Virginia Tech research programs, the Institute for Critical Technology and Applied Science (ICTAS) and the Institute for Society Culture and the Environment (ISCE).

In Alabama, along oxygen-rich beaches, they found no large oil slicks or massive tar balls, but smaller, raison-shaped chunks of oil with the texture of soft licorice. In oxygen-poor wetland areas, thick, sludgy raisin-shaped balls of oil are still being reported. The researchers already have received assistance from the U.S. Coast Guard and the Environmental Protection Agency in surveying and sampling the crude oil.

“Most of the remaining oil will end up in the marshes and on the sea floor, and may not be obvious as it is on the beaches,” said Pruden-Bagchi. Future trips to the Gulf coast are planned.

Widdowson and Pruden-Bagchi are focused on sharing the information with those handling the Gulf Coast disaster and future oil spills, but also plan to submit their findings for publication in peer-reviewed scientific journals. Pruden-Bagchi also conducted an oil spill clean-up activity for regional middle school students through Virginia Tech’s Imagination summer camp, held in July.

Both lead researchers are familiar with the Gulf Coast. Pruden-Bagchi’s spouse has relatives conducting research at Mobile’s University of South Alabama, while Widdowson has lived in Alabama. “My wife and I both attended Auburn University and occasionally managed to slip away to the Gulf beaches, including Gulf Shores. We were attracted by the beauty of the white sand and crystal clear ocean.”

The College of Engineering ( at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 6,000 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Steven Mackay | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>