Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop unique waste cleanup for rural areas

19.09.2014

Washington State University researchers have developed a unique method to use microbes buried in pond sediment to power waste cleanup in rural areas.

The first microbe-powered, self-sustaining wastewater treatment system could lead to an inexpensive and quick way to clean up waste from large farming operations and rural sewage treatment plants while reducing pollution.

Professor Haluk Beyenal and graduate student Timothy Ewing in the Voiland College of Engineering and Architecture discuss the system in the online edition of Journal of Power Sources and have filed for a patent.

Cutting greenhouse gases

Traditionally, waste from dairy farms in rural areas is placed in a series of ponds to be eaten by bacteria, generating carbon dioxide and methane pollution, until the waste is safely treated. In urban areas with larger infrastructure, electrically powered aerators mix water in the ponds, allowing for the waste to be cleaned faster and with fewer harmful emissions.

As much as 5 percent of energy used in the U.S. goes for waste water treatment, said Beyenal. Most rural communities and farmers, meanwhile, can’t afford the cleaner, electrically powered aerators.

Microbial fuel cells use biological reactions from microbes in water to create electricity. The WSU researchers developed a microbial fuel cell that does the work of the aerator, using only the power of microbes in the sewage lagoons to generate electricity.

The researchers created favorable conditions for growth of microbes that are able to naturally generate electrons as part of their metabolic processes. The microbes were able to successfully power aerators in the lab for more than a year, and the researchers are hoping to test a full-scale pilot for eventual commercialization.

Hope for dairies

The researchers believe that the microbial fuel cell technology is on the cusp of providing useful power solutions for communities.

“Everyone is looking to improve dairies to keep them in business and to keep these family businesses going,’’ said Ewing.

The technology could also be used in underdeveloped countries to more effectively clean polluted water: “This is the first step towards sustainable wastewater treatment,’’ Ewing said.

Beyenal has been conducting research for several years on microbial fuel cells for low-power electronic devices, particularly for use in remote areas or underwater where using batteries is challenging. Last year, he and his graduate students used the microbes to power lights for a holiday tree.

Ewing, who grew up on a cattle ranch in Custer, Wash., developed an interest in microbial fuel cells as an undergraduate at WSU.

The work was funded by two National Science Foundation CAREER awards, the U.S. Office of Naval Research and Washington State University’s Agricultural Research Center. 

Contacts:
Haluk Beyenal, associate professor, WSU Voiland School of Chemical Engineering and Bioengineering, 509-335-6607, beyenal@wsu.edu
Tina Hilding, communications coordinator, WSU Voiland College of Engineering and Architecture, 509-335-5095, thilding@wsu.edu

Haluk Beyenal | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>