Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop simulation to better understand the effects of sound on marine life

01.09.2010
A combination of the biology of marine mammals, mechanical vibrations and acoustics has led to a breakthrough discovery allowing scientists to better understand the potential harmful effects of sound on marine mammals such as whales and dolphins.

An international team of researchers from San Diego State University, UC San Diego, and the Kolmården Zoo in Sweden has developed an approach that integrates advanced computing, X-ray CT scanners, and modern computational methods that give a 3D simulated look inside the head of a Cuvier’s beaked whale.

“Our numerical analysis software can be used to conduct basic research into the mechanism of sound production and hearing in these whales, simulate exposure at sound pressure levels that would be impossible on live animals, or assess various mitigation strategies,” said Petr Krysl, a UC San Diego structural engineering professor who developed the computational methods for this research. “We believe that our research can enable us to understand, and eventually reduce, the potential negative effects of high intensity sound on marine organisms.”

The results of this research were recently published in a PLoS ONE article entitled, “A New Acoustic Portal into the Odontocete Ear and Vibrational Analysis of the Tympanoperiotic Complex” by Krysl, Ted W. Cranford, an adjunct professor of research in biology at San Diego State University; and Mats Amundin, a researcher at Sweden’s Kolmården Zoo. Sponsors of the research include the office of the Chief of Naval Operations (CNO), Environmental Readiness Division.

The model the researchers have developed creates a 3-dimensional virtual environment in which they can simulate sounds propagated through the virtual specimen and reveal the interactions between the sound and the anatomy. By having a virtual “peek” inside the whale’s head, the scientists are able to better understand and see how sound may impact or potentially harm marine life.

“Humans introduce considerable amounts of sound and noise into the oceans of the world,” Krysl said. “Many marine organisms make acute use of sound for their primary sensory modality because light penetrates so poorly into water. The primary focus of our work is Cuvier's beaked whale because some have stranded and died in the presence of Navy sonar. The discoveries we made with regard to the mechanisms of hearing in the beaked whale also apply to the bottlenose dolphin and, we suspect, to all types of toothed whales and perhaps other marine mammals.”

Krysl and his colleagues have been studying the effects sound has on marine life for the past nine years.

“This research program has a very strong experimental component, which has successfully generated digital models of the anatomy of a beaked whale, and has identified mechanical parameters of the biological tissues in the organs of a beaked whale,” Krysl said. “We are continuing our current line of research on the beaked whale and conducting validation experiments with the bottlenose dolphin. We plan additional modeling refinements that will allow us to investigate the entire sound pathway from the sea water to the entrance to the cochlea. These projects address several primary objectives in the Navy’s plan to understand demographics, acoustic exposure thresholds, and mitigation strategies for living marine resources.”

The area of research that deals with noise in the ocean has indeed been growing rapidly with concerns over the rising levels of ocean noise resulting from shipping, petroleum exploration and production, and military exercises, Krysl said.

“We have recently seen that other researchers are adopting our methodology for analyzing the impact of sound on marine mammals, although we are currently the only group producing significant results,” he said. “This project significantly advances our knowledge of the basic biology of marine mammals. Hearing is an essential sensory ability for life under water – sound is used for hunting, navigating, and social interaction. The applied significance of our research has to do with the Navy’s need to use sonar. Consequently, the Navy needs to be able to answer questions such as, ‘Is sonar safe to use and under what conditions?’ and ‘Can we minimize the impact on marine life and how?’ This is not possible without a basic understanding of biology and acoustics of the ocean inhabitants.”

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=977

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>