Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers combine remote sensing technologies for highly detailed look at coastal change

10.08.2012
Shifting sands and tides make it difficult to measure accurately the amount of beach that's available for recreation, development and conservation, but a team of University of Georgia researchers has combined several remote sensing technologies with historical data to create coastal maps with an unsurpassed level of accuracy.
In a study published in the August issue of the journal Tourism Management, they apply their technique to Georgia's Jekyll Island and unveil a new website that allows developers, conservationists and tourists access to maps and data on beach availability, tidal ranges and erosion.

"Policymakers, coastal managers and conservationists can use this information to help make more informed decisions about managing coastal resources," said lead author Byungyun Yang, a recent graduate of the geography doctoral program and current research associate at the UGA Center for Remote Sensing and Mapping Science, part of the Franklin College of Arts and Sciences. "Tourists can easily access the same data with their computers or smartphones to help plan their trip to the beach."

Beach area is typically measured using the same costly and time-consuming land-based survey techniques that are used to plan roads, subdivisions and other projects. The UGA researchers' technique, on the other hand, combines LiDAR (light detection and ranging) data with high-resolution satellite imagery to provide an exceptional level of detail and accuracy. By shooting hundreds of thousands of pulses of light at a surface and then measuring the time it takes for the reflected light to be detected by a sensor, LiDAR provides three-dimensional elevation data with a level of accuracy that is six inches in diameter, or about the size of a grapefruit. High-resolution satellite images similar to those available through Google Earth provide two-dimensional images with a pixel size of approximately three feet by three feet, allowing the researchers to discern coastal features such as sand dunes.

By combining the sources of remote sensing data with historical shoreline maps dating to 1857, the scientists created detailed maps that precisely delineate the boundary between the ocean and the land. Historical tidal data were used to create models of how Jekyll Island would fare under various calculations of sea-level rise and under tropical storm and hurricane storm surge conditions.

"With this high-resolution data, we can model which areas are going to flood with much greater accuracy," said study co-author Tommy Jordan, associate director of CRMS. "We can see things like small indentations and the spaces between the dunes and simulate where the water would go."

The researchers note that the island has changed significantly over the past 155 years. In a pattern common in barrier islands, its northern portions have eroded while its beach area in the southern region has increased.

CRMS director, study co-author and geography professor Marguerite Madden noted that balancing the interests of tourism, conservation and development can be challenging, but said that access to high-quality data can help ensure that stakeholders make well-informed decisions.

"Now all of the interested parties—developers, land managers, the Jekyll Island Authority, the state and the people who enjoy and live on the island—have access to the same maps, images and other data," Madden said.

To access the Jekyll Island beach availability website, see http://maestro.crms.uga.edu/BeachAvailability/.

Byungyun Yang | EurekAlert!
Further information:
http://www.uga.edu
http://news.uga.edu/releases/article/highly-detailed-look-at-coastal-change-080912/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>