Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Calculate the Greenhouse Gas Value of Ecosystems

27.05.2010
Researchers at the University of Illinois have developed a new, more accurate method of calculating the change in greenhouse gas emissions that results from changes in land use.

The new approach, described in the journal Global Change Biology, takes into account many factors not included in previous methods, the researchers report.

There is an urgent need to accurately assess whether particular land-use projects will increase or decrease greenhouse gas emissions, said Kristina Anderson-Teixeira, a postdoctoral researcher in the Energy Biosciences Institute at Illinois and lead author of the new study. The greenhouse gas value (GHGV) of a particular site depends on qualities like the number and size of plants; the ecosystem’s ability to take up or release greenhouse gases over time; and its vulnerability to natural disturbances, such as fire or hurricane damage, she said.

Greenhouse gases trap heat in the atmosphere and contribute to climate change. The most problematic greenhouse gases include carbon dioxide (CO2); methane (CH4), which is about 25 times more effective than CO2 at trapping heat but persists in the atmosphere for much less time; and nitrous oxide (N2O), an undesirable byproduct of crop fertilization.

The new approach accounts for emissions of each of these gases, expressing their net climatic effect in “carbon-dioxide equivalents,” a common currency in the carbon-trading market. This allows scientists to compare the long-term effects of clearing a forest, for example, to the costs of other greenhouse gas emissions, such as those that result from burning fossil fuels for transportation, electricity, heat, or the production of biofuels.

At first glance, biofuels appear carbon-neutral because the plants absorb carbon dioxide from the atmosphere and store the carbon in their tissues as they grow, said plant biology and Energy Biosciences Institute professor Evan DeLucia, who co-wrote the paper. That carbon is released when the plants are used as fuels. These emissions are balanced by the uptake of CO2, so – in theory, at least – no new carbon is added to the atmosphere, he said.

But the full impact of a new biofuel crop should account for all of the greenhouse gases absorbed and released in the process of introducing new crops, he said.

Researchers and policymakers are already in the habit of conducting “life-cycle” analyses of biofuel crops, taking into account many of the greenhouse gas effects of growing the crops and producing the fuel, such as the combustion of fuel in farm equipment, emissions from the processing plant, and emissions from associated land-use changes.

But current methods of estimating the greenhouse gas value of ecosystems – whether for biofuels life-cycle analyses or other purposes – often get it wrong, Anderson-Teixeira said. When considering the cost of replacing a tropical forest with cropland, for example, some may look only at the amount of carbon stored in the trees as a measure of a forest’s GHGV.

“What some analyses miss is the potential for that forest to take up more carbon in the future,” she said. “And they’re missing the greenhouse gas costs – the added emissions that result from intensively managing the land – that are associated with that new cropland.”

Current approaches also routinely fail to consider the timing of greenhouse gas releases, DeLucia said.

“If you cut down a forest, all that carbon doesn’t go up into the atmosphere instantly,” he said. “Some of it is released immediately, but the organic matter in roots and soils decays more slowly. How we deal with the timing of those emissions influences how we perceive an ecosystem’s value.”

Using the new method, the researchers calculated the GHGV of a variety of ecosystem types, including mature and “re-growing” tropical, temperate and boreal forests; tropical and temperate pastures and cropland; wetlands; tropical savannas; temperate shrublands and grasslands; tundra; and deserts.

In general, unmanaged ecosystems – those that we are leaving alone, such as a virgin forest or an abandoned farm where trees are re-growing – are going to have positive greenhouse gas values,” Anderson-Teixeira said. Managed ecosystems such as croplands or pastures generally have low or negative greenhouse gas values, she said.

The calculations would of course vary as a result of local conditions, the researchers said, and the GHGV does not account for the other services a particular ecosystem might provide, such as flood control, improved air and water quality, food production or protection of biodiversity.

“To understand the place of nature these days, we’ve got to put a value on it,” DeLucia said. “It’s got to compete with all the other values that we put out there. This is by far the most comprehensive way to value an ecosystem in the context of greenhouse gases.”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>