Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Tests Powerful New Tool to Advance Ecology, Conservation

30.11.2012
A new University of Florida study shows ecologists may have been missing crucial information from animal bones for more than 150 years.

The study featured on the cover of the November issue of Ecology shows animal bone remains provide high-quality geographical data across an extensive time frame. The research may be used to identify regions of habitat for the conservation of threatened species.

Charles Darwin first noted the importance of studying where animal bones lie on the landscape in 1860, but the topic has since become largely lost to scientists trying to protect and conserve native wildlife. By documenting accumulations of elk bones and antlers on the landscape of Yellowstone National Park in Wyoming, study author Joshua Miller identified areas critical for the species’ survival during spring and winter.

“This is fundamental stuff, because for a long time the common knowledge was that bones only lasted a few years on the landscape,” said Miller, an assistant scientist at the Florida Museum of Natural History on the UF campus and Fenneman assistant research professor at the University of Cincinnati. “It turns out they last a lot longer and surveys of bones on landscapes offer a new tool for conservation and management – one that allows us to collect decades of biological data in a single field season.”

Walking across Yellowstone Park, Miller documented elk skeletal remains and determined the bones record the same seasonal distributions as aerial surveys of living elk.

Ecologists typically gather information for conservation by monitoring wild animals, a task requiring years of financial support and countless hours of observation by wildlife biologists. A long-term study in ecology consists of at least 10 to 20 years of census data. However, because some bones can survive on some landscapes for hundreds of years, they may include data from time periods beyond the reaches of a traditional ecological study, including historical insight often missing from scientists’ knowledge of ecosystems, Miller said.

“A major challenge for wildlife conservation and management has been that biologists can only work in the present – researchers can only start from when they began collecting data,” Miller said. “If someone wants to develop a piece of land, for example, there may only be time for a few years of data collection, and we know as ecologists that such limited observations aren’t enough to capture the full complexities of an ecosystem. This research shows we can go into the past, essentially using bones to travel through time and learn about generations of wildlife that were previously lost to science.”

A popular hunting species, male elk grow to 700 pounds, shedding their more than 30-pound antlers annually. Miller used standardized bone surveys on 40 five-eighth-mile-long plots in the northern range of Yellowstone Park to identify wintering grounds by antler accumulations and calving grounds by the appearance of newborn skeletons.

“Bones are not randomly scattered across a landscape,” Miller said. “Where a bone is found is often as biologically informative as which species it’s from. As we investigate the quality of these geographic data, we’re discovering that this is a gold mine of information.”

Although the study represents a narrow test case, the strong correlation between how bones are distributed across Yellowstone Park and known patterns in how elk use the landscape shows this low-impact survey technique may be useful for understanding other areas, including poorly known or fragile ecosystems, Miller said.

Anna Behrensmeyer, vertebrate paleontology curator at the Smithsonian Institution’s National Museum of Natural History, uses bone surveys in East Africa for understanding the area’s mammal populations and how bones become part of the fossil record. She said the study of taphonomy, the processes affecting organic remains as they become fossilized, is not commonly recognized in the field of ecology.

“In my long-term studies of bones, it has struck me that many ecologists have been missing useful information that is available in bones lying about on modern landscapes,” Behrensmeyer said. “Josh is showing the potential of using bones, antlers and other remains to monitor what animals have been doing for the past decades and even hundreds of years.”

Behrensmeyer said she hopes taphonomy as a research tool spreads from its traditional place in paleontology and archaeology into the realm of ecology.

“Sometimes we taphonomists feel like a small voice in the universe – it’s hard for the dead to capture the attention of scientists focused on understanding living organisms and ecosystems,” Behrensmeyer said. “Once ecologists see this study, they could very well say, ‘Why didn’t I think of that?’ ”

Writer:
Danielle Torrent, dtorrent@flmnh.ufl.edu
Source
Joshua Miller, josh.miller@uc.edu, 513-556-6704

Danielle Torrent | Newswise Science News
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>