Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Indicates Wetland Used With Batch Dosing Produces Cleanest Water From Septic Tank

20.08.2009
With approximately one-fourth of the homes in the United States utilizing a septic tank system for on-site wastewater treatment, finding better ways to protect the surrounding environment and, ultimately, residents' drinking water are essential. Now, Baylor University researchers have created and tested several new treatment systems to see if they could be part of the next generation of residential treatment systems.

Dr. Joe Yelderman, professor of geology at Baylor, and Dr. Margaret Forbes, research associate of biology at Baylor, constructed five different submerged gravel wetlands and tested the contaminant-removal ability of each wetland against different dosing systems, ranging from a continuous dose to a more rapid batch dose coming out of a septic tank. The submerged wetlands rely on the gravel and plants to remove contaminants by mirroring the pollutant removal ability of nature.

“There are a lot of places where it would be nice to build a home, but if you can't put in a septic tank because the soil can't handle a drain field, you can't build a home there unless you have some sort of alternative treatment system,” Yelderman said. “Our goal was to improve the water quality coming out of the septic tank so residents could dispose of the treated wastewater into thinner soil or places where the water table is higher. It would just provide more options to them.”

In Texas, state law requires treated wastewater from a septic tank must be disposed of in the soil, however traditional septic tanks need a certain depth of soil and a certain type of soil to meet environmental standards. Once treated wastewater – known as effluent – leaves a residential septic tank, it flows into what's called a drain field, which is an arrangement of perforated pipes that carry the effluent into the soil. In theory, the soil will further decompose the effluent, making it safer for the environment. However in many areas, the water table is either too high, which means the effluent does not have a chance to fully decompose, or the type of soil can not adequately absorb the effluent, which is the case around much of north and central Texas. The end result produces contaminants like phosphorous and nitrate entering the groundwater.

After several tests on the wetlands to see what dosing system works the best with a specific wetland, the Baylor researchers found that the wetland with gravel and plants performed better, or discharged water that was cleaner, during batch dosing when compared against more continuous dosing. Yelderman said he believes the batch system performed better because of the interaction with the air in between the dosing. When the wetland dried out and was then re-wetted, the gravel and plants oxidized the wastewater better and allowed the aerobic bacteria to better decompose the organic matter. Yelderman said this process actually stressed the plants and they did not grow as large, but they adjusted to the fluctuations and sent their roots deeper.

The results also showed that the wetlands with a certain type of gravel – an expanded shale aggregate – did not perform as well as expected, however it performed as well if not better that just using “regular” gravel. Yelderman said the results also show that the majority of the wetlands significantly reduced Biological Oxygen Demand (BOD) and successfully reduced nutrients like phosphorus and ammonia.

The research was funded by the Texas Onsite Wastewater Treatment Research Council and was completed at the Baylor Wastewater Research Program research site located at the Waco Metropolitan Area Regional Sewerage System.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>