Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research changes understanding of C4 plant evolution

16.11.2010
Innovative research technique reveals C4 grasses older than previously thought

A new analysis of fossilized grass-pollen grains deposited on ancient European lake and sea bottoms 16-35 million years ago reveals that C4 grasses evolved earlier than previously thought.

This new evidence casts doubt on the widely-held belief that the rise of this incredibly productive group of plants was driven by a large drop in atmospheric carbon dioxide concentrations during the Oligocene epoch.

The research team, led by University of Maryland Center for Environmental Science Appalachian Laboratory researcher Dr. David Nelson and University of Illinois Professor Feng Sheng Hu, examined the carbon isotope signatures of hundreds of grass-pollen grains and found that C4 grasses were already present on the landscape during the early part of the Oligocene, some 14 million years earlier than previously thought from geological evidence. Their findings are now published online in the journal Geology and will shortly appear in the print edition.

"The idea that C4 grasses originated prior to global decreases in carbon dioxide levels requires us to reevaluate the way we think about the evolution of C4 photosynthesis," said Dr. Nelson. "This new information should encourage the examination of alternate evolutionary selection pressures, such as warm temperatures or dry climates."

C4 plants compose only 3 percent of flowering plant species, yet account for about 25 percent global terrestrial productivity. About 60% of C4 species are grasses, and they dominate the world's grassland and savanna biomes, particularly those in warmer, lower latitude areas. Their ecological success results from the way these species concentrate and then fix carbon dioxide in order to power photosynthesis. While the most well known C4 plants are maize and sugar cane, both of which are critical to human consumption, there is a growing interest in their use as biofuels in order to capture carbon from the atmosphere to mitigate increasing global carbon dioxide levels.

The team used an innovative technique pioneered by Dr. Nelson earlier in his career - the Single Pollen Isotope Ratio Analysis or SPIRAL – to analyze the samples. The scientists first extracted grains of grass pollen from sedimentary rocks using a micromanipulator; then analyzed the tiny samples using a microcombustion device interfaced with an isotope ratio mass spectrometer in Ann Pearson's laboratory at Harvard University, which houses one of only a handful of these devices in the world. Through this analysis, they were able to detect the signature of C4 species from their more common C3 counterparts, because C4 and C3 plants take up different ratios of carbon isotopes during photosynthesis.

"SPIRAL enables us to detect C4 grasses at much lower abundances in geological records than previous approaches, which is helping to revolutionize our ability to study their ecology and evolution," said Dr. Hu. University of Illinois graduate student Michael Urban, lead author of the paper, continues to analyze samples from other parts of the world to look at variation in C4-grass abundance in relation to past changes in atmospheric CO2 and climate.

The article, "Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene" is online at http://geology.gsapubs.org/content/early/2010/10/05/G31117.1.abstract . This research was supported by University of Illinois Research Board, National Science Foundation and the David and Lucille Packard Foundation Fellowships Program.

The University of Maryland Center for Environmental Science is the University System of Maryland's environmental research institution. UMCES researchers are helping improve our scientific understanding of Maryland, the region and the world through five research centers – Chesapeake Biological Laboratory in Solomons, Appalachian Laboratory in Frostburg, Horn Point Laboratory in Cambridge, Institute of Marine and Environmental Technology in Baltimore, and the Maryland Sea Grant College in College Park.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>