Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Uncovers New Tool to Aid in Dolphin Strandings

02.05.2014

Blood values, other indicators can better enable responders to triage care

The cause of dolphin strandings has long been a mystery but a new study shows that clues about survival rates after release may be found in the sea mammal’s blood.

Published online ahead of print in Marine Mammal Science, the study analyzed blood work and body condition values from stranded common dolphins and compared them with survival rates after release. Responders in the field are now using the blood and health data to make better release decisions and predict survival outcomes.

“The establishment of these blood values provides a window into the overall health of the dolphin and, for responders onsite, collecting blood in the field is relatively easy to do,” said Sarah Sharp, the paper’s lead author and a third-year D.V.M. candidate at the Cummings School of Veterinary Medicine at Tufts University. “Now we have a way to predict which stranded dolphins have a better chance of survival after release and this can help triage care.”

The paper’s authors—including Dr. Joyce Knoll, an associate professor at the Cummings School and Sharp’s mentor, and researchers from the International Fund for Animal Welfare (IFAW) and Woods Hole Oceanographic Institution—analyzed blood samples and body condition scores of 26 common dolphins that were stranded alive on the beaches of Cape Cod, Mass., between January 2010 and June 2012, and found significant hematological differences between survivors and non-survivors. Since 2010, IFAW has been operating a satellite tagging program to evaluate the post-release success of stranded dolphins, and the authors used this data to assess survival rates.

Dolphins that didn’t survive the stranding or a three week post-release period had anemia and lower levels of red blood cells. Some potential causes of anemia in dolphins are chronic disease, poor nutrition, blood loss, pregnancy or liver disease. When compared to survivors, failed dolphins also had an increased concentration of acid in their blood, were dehydrated and had leaner body mass relative to their length. These health indicators and blood values, in addition to necropsy findings, suggest that the dolphins may have had pre-existing illnesses, stranding-induced conditions such as capture myopathy (a metabolic muscle disease resulting from the physical stress of being stranded on land), or both.

“Our team is already utilizing this new information in our stranding response protocols,” said Katie Moore, IFAW’s Animal Rescue Program Director. “This study is the culmination of more than a decade of hard work for our staff and volunteers. I have no doubt that it will help us to improve our responses and the care of individual animals.”

Prior to starting her veterinary studies, Sharp was the stranding coordinator for IFAW’s Marine Mammal Rescue and Research Program on Cape Cod. During her seven years in the field, she responded to approximately 50 mass stranding events, oversaw response to more than 1,200 individually stranded marine mammals, pioneered IFAW’s cetacean satellite tagging program, and trained stranding responders both domestically and internationally. She has experienced the challenges of assessing stranded dolphins’ overall health, especially with mass strandings when multiple animals need care.

Sharp participated in the 2012 Student Summer Research Program at Tufts University and her research was funded by the U.S. Army Medical Research and Materiel Command. The John J. Prescott Marine Mammal Rescue Assistance Program provided support for stranding response efforts during the study period, and the Pegasus Foundation and Barbara Birdsey helped fund the IFAW Satellite Tag Program.

Dolphin strandings occur with consistency on Cape Cod, which has one of the highest cetacean stranding rates in the world. Over the 10-year period ending in 2011, common dolphins represented approximately one-third of the 1,300 cetaceans stranded in this area, making this research an invaluable tool in the rapid response and humane care of these mammals.

Sharp, S. M., Knoll, J. S., Moore, M. J., Moore, K. M., Harry, C. T., Hoppe, J. M., Niemeyer, M. E., Robinson, I., Rose, K. S., Brian Sharp, W. and Rotstein, D. (2013), Hematological, biochemical, and morphological parameters as prognostic indicators for stranded common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, U.S.A. Marine Mammal Science. doi: 10.1111/mms.12093

About Cummings School of Veterinary Medicine at Tufts University
Founded in 1978 in North Grafton, Mass., Cummings School of Veterinary Medicine at Tufts University is internationally esteemed for academic programs that impact society and the practice of veterinary medicine; three hospitals and four clinics that combined log more than 80,000 animal cases each year; and groundbreaking research that benefits animal, public, and environmental health.

Rushmie Nofsinger | newswise
Further information:
http://www.tufts.edu

Further reports about: Cummings Dolphin IFAW Marine Medicine Strandings Veterinary animals blood cetacean dolphins mammals satellite

More articles from Ecology, The Environment and Conservation:

nachricht Roadmap for better protection of Borneo’s cats and small carnivores
30.05.2016 | Forschungsverbund Berlin e.V.

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>