Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Uncovers New Tool to Aid in Dolphin Strandings


Blood values, other indicators can better enable responders to triage care

The cause of dolphin strandings has long been a mystery but a new study shows that clues about survival rates after release may be found in the sea mammal’s blood.

Published online ahead of print in Marine Mammal Science, the study analyzed blood work and body condition values from stranded common dolphins and compared them with survival rates after release. Responders in the field are now using the blood and health data to make better release decisions and predict survival outcomes.

“The establishment of these blood values provides a window into the overall health of the dolphin and, for responders onsite, collecting blood in the field is relatively easy to do,” said Sarah Sharp, the paper’s lead author and a third-year D.V.M. candidate at the Cummings School of Veterinary Medicine at Tufts University. “Now we have a way to predict which stranded dolphins have a better chance of survival after release and this can help triage care.”

The paper’s authors—including Dr. Joyce Knoll, an associate professor at the Cummings School and Sharp’s mentor, and researchers from the International Fund for Animal Welfare (IFAW) and Woods Hole Oceanographic Institution—analyzed blood samples and body condition scores of 26 common dolphins that were stranded alive on the beaches of Cape Cod, Mass., between January 2010 and June 2012, and found significant hematological differences between survivors and non-survivors. Since 2010, IFAW has been operating a satellite tagging program to evaluate the post-release success of stranded dolphins, and the authors used this data to assess survival rates.

Dolphins that didn’t survive the stranding or a three week post-release period had anemia and lower levels of red blood cells. Some potential causes of anemia in dolphins are chronic disease, poor nutrition, blood loss, pregnancy or liver disease. When compared to survivors, failed dolphins also had an increased concentration of acid in their blood, were dehydrated and had leaner body mass relative to their length. These health indicators and blood values, in addition to necropsy findings, suggest that the dolphins may have had pre-existing illnesses, stranding-induced conditions such as capture myopathy (a metabolic muscle disease resulting from the physical stress of being stranded on land), or both.

“Our team is already utilizing this new information in our stranding response protocols,” said Katie Moore, IFAW’s Animal Rescue Program Director. “This study is the culmination of more than a decade of hard work for our staff and volunteers. I have no doubt that it will help us to improve our responses and the care of individual animals.”

Prior to starting her veterinary studies, Sharp was the stranding coordinator for IFAW’s Marine Mammal Rescue and Research Program on Cape Cod. During her seven years in the field, she responded to approximately 50 mass stranding events, oversaw response to more than 1,200 individually stranded marine mammals, pioneered IFAW’s cetacean satellite tagging program, and trained stranding responders both domestically and internationally. She has experienced the challenges of assessing stranded dolphins’ overall health, especially with mass strandings when multiple animals need care.

Sharp participated in the 2012 Student Summer Research Program at Tufts University and her research was funded by the U.S. Army Medical Research and Materiel Command. The John J. Prescott Marine Mammal Rescue Assistance Program provided support for stranding response efforts during the study period, and the Pegasus Foundation and Barbara Birdsey helped fund the IFAW Satellite Tag Program.

Dolphin strandings occur with consistency on Cape Cod, which has one of the highest cetacean stranding rates in the world. Over the 10-year period ending in 2011, common dolphins represented approximately one-third of the 1,300 cetaceans stranded in this area, making this research an invaluable tool in the rapid response and humane care of these mammals.

Sharp, S. M., Knoll, J. S., Moore, M. J., Moore, K. M., Harry, C. T., Hoppe, J. M., Niemeyer, M. E., Robinson, I., Rose, K. S., Brian Sharp, W. and Rotstein, D. (2013), Hematological, biochemical, and morphological parameters as prognostic indicators for stranded common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, U.S.A. Marine Mammal Science. doi: 10.1111/mms.12093

About Cummings School of Veterinary Medicine at Tufts University
Founded in 1978 in North Grafton, Mass., Cummings School of Veterinary Medicine at Tufts University is internationally esteemed for academic programs that impact society and the practice of veterinary medicine; three hospitals and four clinics that combined log more than 80,000 animal cases each year; and groundbreaking research that benefits animal, public, and environmental health.

Rushmie Nofsinger | newswise
Further information:

Further reports about: Cummings Dolphin IFAW Marine Medicine Strandings Veterinary animals blood cetacean dolphins mammals satellite

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>