Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals the give and take of urban temperature mitigating technologies

10.02.2014
Life in a warming world is going to require human ingenuity to adapt to the new realities of Earth.

Greenhouse-gas induced warming and megapolitan expansion are both significant drivers of our warming planet. Researchers are now assessing adaptation technologies that could help us acclimate to these changing realities.


The deployment of cool roofs, roofs typically painted white, help mitigate summertime temperatures but in Florida and some Southwestern cities like Phoenix (pictured) the roofs also have a negative effect on rainfall.

Credit: Ken Fagan, Arizona State University

But how well these adaptation technologies – such as cool roofs, green roofs and hybrids of the two – perform year round and how this performance varies with place remains uncertain.

Now a team of researchers, led by Matei Georgescu, an Arizona State University assistant professor in the School of Geographical Sciences and Urban Planning and a senior sustainability scientist in the Global Institute of Sustainability, have begun exploring the relative effectiveness of some of the most common adaptation technologies aimed at reducing warming from urban expansion.

The work showed that end-of-century urban expansion within the U.S. alone and separate from greenhouse-gas induced climate change, can raise near surface temperatures by up to 3 C (nearly 6 F) for some megapolitan areas. Results of the new study indicate the performance of urban adaptation technologies can counteract this increase in temperature, but also varies seasonally and is geographically dependent.

In the paper, "Urban adaptation can roll back warming of emerging megapolitan regions," published in the online Early Edition of the Proceedings of the National Academy of Sciences, Georgescu and Philip Morefield, Britta Bierwagen and Christopher Weaver all of the U.S. Environmental Protection Agency, examined how these technologies fare across different geographies and climates of the U.S.

"This is the first time all of these approaches have been examined across various climates and geographies," said Georgescu. "We looked at each adaptation strategy and their impacts across all seasons, and we quantified consequences that extend to hydrology (rainfall), climate and energy. We found geography matters," he added.

Specifically, what works in California's Central Valley, like cool roofs, does not necessarily provide the same benefits to other regions of the U.S., like Florida, Georgescu said. Assessing consequences that extend beyond near surface temperatures, like rainfall and energy demand, reveals important tradeoffs that are oftentimes unaccounted for.

Cool roofs are a good example. In an effort to reflect incoming solar radiation, and therefore cools buildings and lessen energy demand during summer, painting one's roof white has been proposed as an effective strategy. Cool roofs have been found to be particularly effective for certain areas during summertime.

However, during winter these same urban adaptation strategies when deployed in northerly locations, further cool the environment and consequently require additional heating to maintain comfort levels. This is an important seasonal contrast between cool roofs (i.e. highly reflective) and green roofs (i.e. highly transpiring). While green roofs do not cool the environment as much during summer, they also do not compromise summertime energy savings with additional energy demand during winter.

"The energy savings gained during the summer season, for some regions, is nearly entirely lost during the winter season," Georgescu said.

In Florida, and to a lesser extent Southwestern states of the U.S., there is a very different effect caused by cool roofs.

"In Florida, our simulations indicate a significant reduction in precipitation. The deployment of cool roofs results in a 2 to 4 millimeter per day reduction in rainfall, a considerable amount (nearly 50 percent) that will have implications for water availability, reduced stream flow and negative consequences for ecosystems," he said. "For Florida, cool roofs may not be the optimal way to battle the urban heat island because of these unintended consequences."

Georgescu said the researchers did not intend to rate urban adaptation technologies as much as to shed light on each technology's advantages and disadvantages.

"We simply wanted to get all of the technologies on a level playing field and draw out the issues associated with each one, across place and across time."

Overall, the researchers suggest that judicious planning and design choices should be considered in trying to counteract rising temperatures caused by urban sprawl and greenhouse gasses. They add that, "urban-induced climate change depends on specific geographic factors that must be assessed when choosing optimal approaches, as opposed to one size fits all solutions."

Source:
Matei Georgescu, (480) 727-5986
Media contact:
Skip Derra, (480) 965-4823; skip.derra@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>