Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Advances Understanding of Pollution Dispersion in Atmosphere, Ocean

25.05.2010
The eruption of the volcano in Iceland has drawn attention to air flow patterns, as airlines lost millions of dollars and travelers remained stranded for days to weeks, as particles from the natural disaster traveled throughout Europe, forcing closures of major airports.

The flow of particles, although seemingly random, can be characterized more effectively, according to work done by Virginia Tech’s Shane Ross of the engineering science and mechanics (ESM) department and his colleague Francois Lekien of École Polytechnique, Université Libre de Bruxelles, Belgium, who reported their findings in the publication Chaos. http://chaos.aip.org/chaoeh/v20/i1

Their research “will aid scientists and engineers in understanding and in controlling this type of global-scale phenomena, such as pollution dispersion in the atmosphere and the ocean, and large-scale transport of biological organisms, including airborne plant pathogens and respiratory disease agents,” said Ishwar Puri, head of the ESM department at Virginia Tech.

For example, the current British Petroleum oil spill in the Gulf of Mexico, might be modeled using Ross and Lekien’s findings to provide greater insight into how the particles might be dragged into the Gulf of Mexico’s Loop Current.

In explaining how they conducted their research on the flow of particles, Ross and Lekien said they employed existing scientific principles of Lagrangian coherent structures, which reveals the separation of the atmosphere into dynamically distinct regions, to investigate the shapes of geophysical flow patterns. http://www.esm.vt.edu/person.php?id=10139

They used the 2002 discovery of the Antarctic hole in their work because they viewed it as a “prototype atmospheric event” allowing for their studies on topological divisions on the mixing and transport of atmospheric tracers.

As the media worldwide broadly publicized the finding of the Antarctic hole, it became the focus of the atmospheric science community. As Ross described the event, when the ozone hole split in two, allowing one of its fragments or regions to reassert its position over the Antarctic Pole while the other one spread into the mid-latitude regions, it implied “a sudden stratospheric warming.”

This type of global warming occurs in roughly half of all winters in the Arctic. The scientific explanation, Ross said, is “they are produced by the dynamic momentum force resulting from the breaking and dissipation of planetary-scale Rossby waves in the stratosphere.”

This phenomenon had never been observed in the Antarctic prior to 2002, according to reliable records that go back some 50 years. Consequently, Ross and Lekien labeled it a “prototype” of rare atmospheric events.

Reviewing data from the event, they were able to determine that an isolated “blob of air” was slowly rotating over Antarctica. Lagrangian coherent structures, some which repel nearby air and some that attract it, formed inside the vortex. The vortex pinched off, sending the northwestern part of the ozone hole off into the mid latitude range while the southwestern portion returned to its regular position over the South Pole.

Consequently, they write, when there is more than one vortex flow on a sphere, such as the planet Earth, “complicated spatial structures can arise and evolve, such as the polar vortex split.” They were able to model this event, capturing some of its dynamic features.

“This model is very relevant both in atmospheric and oceanographic settings when one considers large-scale phenomena where the spatial geometry of the Earth’s surface becomes important. The full spherical geometry, as opposed to tangent plane approximations, is particularly important when considering global streamline patterns generated by a given vorticity distribution…These patterns, in turn, provide the dynamical templates by which one can begin to understand the chaotic advection of particles in a vortex-dominated flow.”

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>