Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Advances Understanding of Pollution Dispersion in Atmosphere, Ocean

25.05.2010
The eruption of the volcano in Iceland has drawn attention to air flow patterns, as airlines lost millions of dollars and travelers remained stranded for days to weeks, as particles from the natural disaster traveled throughout Europe, forcing closures of major airports.

The flow of particles, although seemingly random, can be characterized more effectively, according to work done by Virginia Tech’s Shane Ross of the engineering science and mechanics (ESM) department and his colleague Francois Lekien of École Polytechnique, Université Libre de Bruxelles, Belgium, who reported their findings in the publication Chaos. http://chaos.aip.org/chaoeh/v20/i1

Their research “will aid scientists and engineers in understanding and in controlling this type of global-scale phenomena, such as pollution dispersion in the atmosphere and the ocean, and large-scale transport of biological organisms, including airborne plant pathogens and respiratory disease agents,” said Ishwar Puri, head of the ESM department at Virginia Tech.

For example, the current British Petroleum oil spill in the Gulf of Mexico, might be modeled using Ross and Lekien’s findings to provide greater insight into how the particles might be dragged into the Gulf of Mexico’s Loop Current.

In explaining how they conducted their research on the flow of particles, Ross and Lekien said they employed existing scientific principles of Lagrangian coherent structures, which reveals the separation of the atmosphere into dynamically distinct regions, to investigate the shapes of geophysical flow patterns. http://www.esm.vt.edu/person.php?id=10139

They used the 2002 discovery of the Antarctic hole in their work because they viewed it as a “prototype atmospheric event” allowing for their studies on topological divisions on the mixing and transport of atmospheric tracers.

As the media worldwide broadly publicized the finding of the Antarctic hole, it became the focus of the atmospheric science community. As Ross described the event, when the ozone hole split in two, allowing one of its fragments or regions to reassert its position over the Antarctic Pole while the other one spread into the mid-latitude regions, it implied “a sudden stratospheric warming.”

This type of global warming occurs in roughly half of all winters in the Arctic. The scientific explanation, Ross said, is “they are produced by the dynamic momentum force resulting from the breaking and dissipation of planetary-scale Rossby waves in the stratosphere.”

This phenomenon had never been observed in the Antarctic prior to 2002, according to reliable records that go back some 50 years. Consequently, Ross and Lekien labeled it a “prototype” of rare atmospheric events.

Reviewing data from the event, they were able to determine that an isolated “blob of air” was slowly rotating over Antarctica. Lagrangian coherent structures, some which repel nearby air and some that attract it, formed inside the vortex. The vortex pinched off, sending the northwestern part of the ozone hole off into the mid latitude range while the southwestern portion returned to its regular position over the South Pole.

Consequently, they write, when there is more than one vortex flow on a sphere, such as the planet Earth, “complicated spatial structures can arise and evolve, such as the polar vortex split.” They were able to model this event, capturing some of its dynamic features.

“This model is very relevant both in atmospheric and oceanographic settings when one considers large-scale phenomena where the spatial geometry of the Earth’s surface becomes important. The full spherical geometry, as opposed to tangent plane approximations, is particularly important when considering global streamline patterns generated by a given vorticity distribution…These patterns, in turn, provide the dynamical templates by which one can begin to understand the chaotic advection of particles in a vortex-dominated flow.”

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>