Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Advances Understanding of Pollution Dispersion in Atmosphere, Ocean

25.05.2010
The eruption of the volcano in Iceland has drawn attention to air flow patterns, as airlines lost millions of dollars and travelers remained stranded for days to weeks, as particles from the natural disaster traveled throughout Europe, forcing closures of major airports.

The flow of particles, although seemingly random, can be characterized more effectively, according to work done by Virginia Tech’s Shane Ross of the engineering science and mechanics (ESM) department and his colleague Francois Lekien of École Polytechnique, Université Libre de Bruxelles, Belgium, who reported their findings in the publication Chaos. http://chaos.aip.org/chaoeh/v20/i1

Their research “will aid scientists and engineers in understanding and in controlling this type of global-scale phenomena, such as pollution dispersion in the atmosphere and the ocean, and large-scale transport of biological organisms, including airborne plant pathogens and respiratory disease agents,” said Ishwar Puri, head of the ESM department at Virginia Tech.

For example, the current British Petroleum oil spill in the Gulf of Mexico, might be modeled using Ross and Lekien’s findings to provide greater insight into how the particles might be dragged into the Gulf of Mexico’s Loop Current.

In explaining how they conducted their research on the flow of particles, Ross and Lekien said they employed existing scientific principles of Lagrangian coherent structures, which reveals the separation of the atmosphere into dynamically distinct regions, to investigate the shapes of geophysical flow patterns. http://www.esm.vt.edu/person.php?id=10139

They used the 2002 discovery of the Antarctic hole in their work because they viewed it as a “prototype atmospheric event” allowing for their studies on topological divisions on the mixing and transport of atmospheric tracers.

As the media worldwide broadly publicized the finding of the Antarctic hole, it became the focus of the atmospheric science community. As Ross described the event, when the ozone hole split in two, allowing one of its fragments or regions to reassert its position over the Antarctic Pole while the other one spread into the mid-latitude regions, it implied “a sudden stratospheric warming.”

This type of global warming occurs in roughly half of all winters in the Arctic. The scientific explanation, Ross said, is “they are produced by the dynamic momentum force resulting from the breaking and dissipation of planetary-scale Rossby waves in the stratosphere.”

This phenomenon had never been observed in the Antarctic prior to 2002, according to reliable records that go back some 50 years. Consequently, Ross and Lekien labeled it a “prototype” of rare atmospheric events.

Reviewing data from the event, they were able to determine that an isolated “blob of air” was slowly rotating over Antarctica. Lagrangian coherent structures, some which repel nearby air and some that attract it, formed inside the vortex. The vortex pinched off, sending the northwestern part of the ozone hole off into the mid latitude range while the southwestern portion returned to its regular position over the South Pole.

Consequently, they write, when there is more than one vortex flow on a sphere, such as the planet Earth, “complicated spatial structures can arise and evolve, such as the polar vortex split.” They were able to model this event, capturing some of its dynamic features.

“This model is very relevant both in atmospheric and oceanographic settings when one considers large-scale phenomena where the spatial geometry of the Earth’s surface becomes important. The full spherical geometry, as opposed to tangent plane approximations, is particularly important when considering global streamline patterns generated by a given vorticity distribution…These patterns, in turn, provide the dynamical templates by which one can begin to understand the chaotic advection of particles in a vortex-dominated flow.”

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>