Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Adds to Mounting Evidence Against Popular Pavement Sealcoat

16.03.2012
A parking lot at the edge of the University of New Hampshire campus has contributed important research to an emerging concern for the environment and human health.

The research, detailed in a recent feature article in the journal Environmental Science & Technology, has found that one type of pavement sealcoat, common on driveways and parking lots throughout the nation, has significant health and ecosystem implications. Alison Watts, research assistant professor of civil engineering at UNH, is a co-author of the article “Coal-Tar-Based Pavement Sealcoat and PAHs: Implications for the Environment, Human Health, and Stormwater Management.”

Sealcoat, a black surface applied over asphalt pavements that is marketed as improving appearance and enhancing pavement longevity, is made of either an asphalt emulsion or a refined coal-tar pitch emulsion. Although the two sealcoats are similar in appearance and cost, concentrations of PAHs (polycyclic aromatic hydrocarbons), a group of organic compounds known to be detrimental to human and ecosystem health, are about 1,000 times higher in coal-tar-based sealcoats than those based in asphalt.

Conducting side-by-side studies of coal-tar-based sealcoated and nonsealcoated parking lots at UNH’s West Edge lot, Watts, a researcher with the UNH Stormwater Center, found that the soil at the edge of the sealcoated lot contained “orders of magnitude higher concentrations” – several hundred parts per million (ppm) from the sealcoated lot versus less than 10 ppm from the lot without sealcoating -- of PAHs. What’s more, soil samples taken three years after the initial application of sealcoat remained high in PAHs.

The problem may be even more pronounced in New England: PAHs move into the environment as the sealcoat wears off, a process that snowplows seem to accelerate. “We think it’s likely that we have even a more severe problem here in the Northeast, because the sealcoat wears off more rapidly,” Watts says.

The journal article discusses the potential human health effects of coal-tar-based sealcoat, which is associated with elevated concentrations of PAHs in house dust, soil, air, water, and sediment. It cites a recent study that found that children living in homes adjacent to pavement with coal-tar-based sealcoat were likely exposed to about 14-fold higher doses of PAHs than those living adjacent to unsealed pavement. Studies at the Columbia Center for Children’s Health have found that PAHs in homes can contribute to delays in cognitive development, asthma and other respiratory symptoms, obesity and metabolic disorders, or changes at the molecular level that could increase children’s cancer risk.

Unlike many complex environmental issues, however, this one has a relatively painless fix: avoid coal-tar-based sealcoats in favor of asphalt-based ones, or no sealcoat at all. “Consumers generally can’t tell the difference,” Watts says. And voluntary shifts in the market are making that choice easier, she says, noting that retailers Home Depot and Lowes no longer sell coal-tar-based sealcoat, and several commercial sealcoaters use only asphalt-based sealcoat.

“The crux of this issue is that it’s a fairly simply choice we can make that will be beneficial to the environment and to human health without significant impact to the users,” Watts says.

Moving beyond the Stormwater Center’s test parking lots, Watts will next study the effect of coal-tar-based sealcoats in raising the PAH concentration in the sediments of New Hampshire’s Great Bay. “PAHs are increasing in Great Bay sediments, and in fact in sediments across the country,” she says. While there are other sources of PAHs in the Great Bay -- including old gas plants, car exhaust, and woodstove smoke -- she wonders if sealcoat may be the culprit.

Watts’s work has been funded by New Hampshire Sea Grant and the Environmental Protection Agency; the upcoming Great Bay study received funding from the U.S. Geological Society. Learn more about PAHs in sealcoat from this brochure co-produced by NH Sea Grant and the UNH Stormwater Center: http://www.unh.edu/unhsc/sites/

unh.edu.unhsc/files/UNHSC%20Seagrant%20sealcoat%20fact%20sheet.pdf.

The feature article can be found here: http://tx.usgs.gov/coring/pubs/MahlerESTsealcoatFeature2012.pdf

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photograph available to download: http://unh.edu/news/cj_nr/2012/mar/bp14ceps.jpg
Caption: University of New Hampshire research on coal-tar-based sealcoat has contributed to growing concern about the substance’s impact on human and environmental health.

Credit: UNH Stormwater Center

Beth Potier | Newswise Science News
Further information:
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>