Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex Carbon Picture Clearer

12.12.2007
Study shows that more plant litter resulting from higher CO2 could boost the amount of carbon released into the atmosphere

A new study looks at a poorly understood process with potentially critical consequences for climate change. Emma Sayer, postdoctoral fellow at the Smithsonian Tropical Research Institute, Jennifer Powers, an assistant professor in the University of Minnesota’s Department of Ecology, Evolution and Behavior, and Edmund Tanner, researcher at Cambridge University, published the findings of their long-term study on the effects of increased plant litter on soil carbon and nutrient cycling in the December 12 edition of PLoS ONE.

As CO2 concentrations in the atmosphere continue to rise, increases in plant productivity – and litterfall – are likely. The study considers the impact of an increase in organic matter on the ground on processes belowground. Results suggest that the balance of carbon stored in the soils (thought to be a long-term sink for carbon) can be changed with the addition of fresh leaf litter. The capacity of soils to store carbon might then diminish if global environmental changes such as CO2 increases and nitrogen deposition boost plant productivity.

Over the course of the 5-year experiment, the fluxes of carbon dioxide from the soil surface to the atmosphere in a tropical forest in Panama were measured. These CO2 fluxes (also called soil respiration) come from two main sources: the respiration of roots and the decomposition of litter and soil organic matter by fungi, bacteria, and other microorganisms.

“To our surprise, the litter addition plots showed substantially higher amounts of soil respiration than would be predicted by the increase in leaf litter,” said Powers. “We suspect that this extra CO2 in the litter addition plots was coming from the decomposition of ‘old soil organic matter’, which was stimulated by adding large quantities of fresh leaf litter.” This effect, the stimulation of the decomposition of old, ‘stored’ organic carbon by the addition of fresh organic matter is known as the ‘priming effect.’ “There are important links between above-and belowground processes and we need to understand these links in order to assess the impact of global change and human disturbance on natural ecosystems” said Sayer.

The study has implications for policy makers considering new approaches to capping carbon emissions such as carbon sequestration. “Our results suggest unanticipated feedbacks to the carbon cycle that must be taken into account when estimating the potential for carbon sequestration in the soil,” Powers said.

Emma Sayer of the Smithsonian Tropical Research Institute and Cambridge University is the lead author of the study. Edmund Tanner, also of Cambridge University, and Jennifer Powers of the University of Minnesota are co-authors.

Citation: Sayer EJ, Powers JS, Tanner EVJ (2007) Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere. PLoS ONE 2(12): e1299. doi:10.1371/journal.pone.0001299

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001299
http://www.plos.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>