Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Complex Carbon Picture Clearer

Study shows that more plant litter resulting from higher CO2 could boost the amount of carbon released into the atmosphere

A new study looks at a poorly understood process with potentially critical consequences for climate change. Emma Sayer, postdoctoral fellow at the Smithsonian Tropical Research Institute, Jennifer Powers, an assistant professor in the University of Minnesota’s Department of Ecology, Evolution and Behavior, and Edmund Tanner, researcher at Cambridge University, published the findings of their long-term study on the effects of increased plant litter on soil carbon and nutrient cycling in the December 12 edition of PLoS ONE.

As CO2 concentrations in the atmosphere continue to rise, increases in plant productivity – and litterfall – are likely. The study considers the impact of an increase in organic matter on the ground on processes belowground. Results suggest that the balance of carbon stored in the soils (thought to be a long-term sink for carbon) can be changed with the addition of fresh leaf litter. The capacity of soils to store carbon might then diminish if global environmental changes such as CO2 increases and nitrogen deposition boost plant productivity.

Over the course of the 5-year experiment, the fluxes of carbon dioxide from the soil surface to the atmosphere in a tropical forest in Panama were measured. These CO2 fluxes (also called soil respiration) come from two main sources: the respiration of roots and the decomposition of litter and soil organic matter by fungi, bacteria, and other microorganisms.

“To our surprise, the litter addition plots showed substantially higher amounts of soil respiration than would be predicted by the increase in leaf litter,” said Powers. “We suspect that this extra CO2 in the litter addition plots was coming from the decomposition of ‘old soil organic matter’, which was stimulated by adding large quantities of fresh leaf litter.” This effect, the stimulation of the decomposition of old, ‘stored’ organic carbon by the addition of fresh organic matter is known as the ‘priming effect.’ “There are important links between above-and belowground processes and we need to understand these links in order to assess the impact of global change and human disturbance on natural ecosystems” said Sayer.

The study has implications for policy makers considering new approaches to capping carbon emissions such as carbon sequestration. “Our results suggest unanticipated feedbacks to the carbon cycle that must be taken into account when estimating the potential for carbon sequestration in the soil,” Powers said.

Emma Sayer of the Smithsonian Tropical Research Institute and Cambridge University is the lead author of the study. Edmund Tanner, also of Cambridge University, and Jennifer Powers of the University of Minnesota are co-authors.

Citation: Sayer EJ, Powers JS, Tanner EVJ (2007) Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere. PLoS ONE 2(12): e1299. doi:10.1371/journal.pone.0001299

Andrew Hyde | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht El Niño Warming Causes Significant Coral Damage in Central Pacific
01.12.2015 | Georgia Institute of Technology

nachricht Waters are more polluted than tests say: Standard toxicity analyses come up short
30.11.2015 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>