Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology disposes of sludge

16.05.2002


Research funded by the European Space Agency into ways of feeding future astronauts on missions to Mars is about to find a very down-to-earth application - how to dispose of the sewage sludge left over after wastewater treatment.



The MELISSA (Micro-Ecological Life Support Alternative) project, which ESA is funding in companies and research institutes throughout Europe, is developing a system of recycling as much of the waste as possible produced by astronauts on long-duration space missions into food and other consumables. EPAS, a Belgian company participating in the project, is using some of the research results to devise methods of substantially reducing the amount of solid material left over after sewage treatment on Earth.
Presently-available technologies reduce the amount of solid waste left in effluent such as pig waste, vegetable waste or sewage by 40-60% at most, according to Dries Demey from EPAS. In space, it`s essential to find ways of using the remainder. On Earth, it`s not essential, but would be highly desirable. At present, this undigested fraction is disposed of in landfill sites or, when suitable, by spreading on agricultural land. "In Flanders, there`s not a lot of land and the tax on sludge disposal at landfill sites is getting higher," says Demey.

Whether in space or on Earth, waste initially enters a fermentation chamber where carefully chosen bacteria break down the solids. As this process is unable to biodegrade recalcitrant fractions, EPAS began investigating additional treatments to reduce the waste further.



The method that worked best involves using hydrogen peroxide, a reactive but harmless oxidant, to break down the resistant fraction which can then be reintroduced to the original fermentation chamber after removal of the peroxide. "The results have been quite positive," says Demey. "We`ve been able to remove 85% of the solid waste and convert it into water and methane gas, which can be used to generate electricity. We`ve tested the method on sludge waste from a Flemish food company. The only obstacle is that the cost is higher than that of current disposal methods, but this will change in future".

Flammable methane may be a desirable end product on Earth, but in space it could be a disaster. "By adapting the process conditions, we can slow down the fermentation process and stop it before methane is produced, " says Christophe Lasseur, MELISSA project manager at ESTEC, ESA`s technical centre in the Netherlands. This could involve maintaining a high ammonium (urea) concentration, high acidity, or by washing methane-producing bacteria out of the fermentation chamber.

During fermentation, long organic (carbon-based) molecules are gradually broken down until ultimately carbon dioxide and methane, molecules containing just one carbon atom, are produced. "In the MELISSA system, we stop when the long molecules have broken down into fatty acids," says Lasseur. The fatty acids are then used to feed bacteria which also consume some of the ammonium. The remaining ammonium is fed into the third MELISSA compartment where it is converted into nitrates which are used to feed the plants that astronauts eat for dinner.



Christophe Lasseur | alphagalileo
Further information:
http://www.esa.int

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>