Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology disposes of sludge

16.05.2002


Research funded by the European Space Agency into ways of feeding future astronauts on missions to Mars is about to find a very down-to-earth application - how to dispose of the sewage sludge left over after wastewater treatment.



The MELISSA (Micro-Ecological Life Support Alternative) project, which ESA is funding in companies and research institutes throughout Europe, is developing a system of recycling as much of the waste as possible produced by astronauts on long-duration space missions into food and other consumables. EPAS, a Belgian company participating in the project, is using some of the research results to devise methods of substantially reducing the amount of solid material left over after sewage treatment on Earth.
Presently-available technologies reduce the amount of solid waste left in effluent such as pig waste, vegetable waste or sewage by 40-60% at most, according to Dries Demey from EPAS. In space, it`s essential to find ways of using the remainder. On Earth, it`s not essential, but would be highly desirable. At present, this undigested fraction is disposed of in landfill sites or, when suitable, by spreading on agricultural land. "In Flanders, there`s not a lot of land and the tax on sludge disposal at landfill sites is getting higher," says Demey.

Whether in space or on Earth, waste initially enters a fermentation chamber where carefully chosen bacteria break down the solids. As this process is unable to biodegrade recalcitrant fractions, EPAS began investigating additional treatments to reduce the waste further.



The method that worked best involves using hydrogen peroxide, a reactive but harmless oxidant, to break down the resistant fraction which can then be reintroduced to the original fermentation chamber after removal of the peroxide. "The results have been quite positive," says Demey. "We`ve been able to remove 85% of the solid waste and convert it into water and methane gas, which can be used to generate electricity. We`ve tested the method on sludge waste from a Flemish food company. The only obstacle is that the cost is higher than that of current disposal methods, but this will change in future".

Flammable methane may be a desirable end product on Earth, but in space it could be a disaster. "By adapting the process conditions, we can slow down the fermentation process and stop it before methane is produced, " says Christophe Lasseur, MELISSA project manager at ESTEC, ESA`s technical centre in the Netherlands. This could involve maintaining a high ammonium (urea) concentration, high acidity, or by washing methane-producing bacteria out of the fermentation chamber.

During fermentation, long organic (carbon-based) molecules are gradually broken down until ultimately carbon dioxide and methane, molecules containing just one carbon atom, are produced. "In the MELISSA system, we stop when the long molecules have broken down into fatty acids," says Lasseur. The fatty acids are then used to feed bacteria which also consume some of the ammonium. The remaining ammonium is fed into the third MELISSA compartment where it is converted into nitrates which are used to feed the plants that astronauts eat for dinner.



Christophe Lasseur | alphagalileo
Further information:
http://www.esa.int

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>