Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology disposes of sludge

16.05.2002


Research funded by the European Space Agency into ways of feeding future astronauts on missions to Mars is about to find a very down-to-earth application - how to dispose of the sewage sludge left over after wastewater treatment.



The MELISSA (Micro-Ecological Life Support Alternative) project, which ESA is funding in companies and research institutes throughout Europe, is developing a system of recycling as much of the waste as possible produced by astronauts on long-duration space missions into food and other consumables. EPAS, a Belgian company participating in the project, is using some of the research results to devise methods of substantially reducing the amount of solid material left over after sewage treatment on Earth.
Presently-available technologies reduce the amount of solid waste left in effluent such as pig waste, vegetable waste or sewage by 40-60% at most, according to Dries Demey from EPAS. In space, it`s essential to find ways of using the remainder. On Earth, it`s not essential, but would be highly desirable. At present, this undigested fraction is disposed of in landfill sites or, when suitable, by spreading on agricultural land. "In Flanders, there`s not a lot of land and the tax on sludge disposal at landfill sites is getting higher," says Demey.

Whether in space or on Earth, waste initially enters a fermentation chamber where carefully chosen bacteria break down the solids. As this process is unable to biodegrade recalcitrant fractions, EPAS began investigating additional treatments to reduce the waste further.



The method that worked best involves using hydrogen peroxide, a reactive but harmless oxidant, to break down the resistant fraction which can then be reintroduced to the original fermentation chamber after removal of the peroxide. "The results have been quite positive," says Demey. "We`ve been able to remove 85% of the solid waste and convert it into water and methane gas, which can be used to generate electricity. We`ve tested the method on sludge waste from a Flemish food company. The only obstacle is that the cost is higher than that of current disposal methods, but this will change in future".

Flammable methane may be a desirable end product on Earth, but in space it could be a disaster. "By adapting the process conditions, we can slow down the fermentation process and stop it before methane is produced, " says Christophe Lasseur, MELISSA project manager at ESTEC, ESA`s technical centre in the Netherlands. This could involve maintaining a high ammonium (urea) concentration, high acidity, or by washing methane-producing bacteria out of the fermentation chamber.

During fermentation, long organic (carbon-based) molecules are gradually broken down until ultimately carbon dioxide and methane, molecules containing just one carbon atom, are produced. "In the MELISSA system, we stop when the long molecules have broken down into fatty acids," says Lasseur. The fatty acids are then used to feed bacteria which also consume some of the ammonium. The remaining ammonium is fed into the third MELISSA compartment where it is converted into nitrates which are used to feed the plants that astronauts eat for dinner.



Christophe Lasseur | alphagalileo
Further information:
http://www.esa.int

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>