Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology disposes of sludge

16.05.2002


Research funded by the European Space Agency into ways of feeding future astronauts on missions to Mars is about to find a very down-to-earth application - how to dispose of the sewage sludge left over after wastewater treatment.



The MELISSA (Micro-Ecological Life Support Alternative) project, which ESA is funding in companies and research institutes throughout Europe, is developing a system of recycling as much of the waste as possible produced by astronauts on long-duration space missions into food and other consumables. EPAS, a Belgian company participating in the project, is using some of the research results to devise methods of substantially reducing the amount of solid material left over after sewage treatment on Earth.
Presently-available technologies reduce the amount of solid waste left in effluent such as pig waste, vegetable waste or sewage by 40-60% at most, according to Dries Demey from EPAS. In space, it`s essential to find ways of using the remainder. On Earth, it`s not essential, but would be highly desirable. At present, this undigested fraction is disposed of in landfill sites or, when suitable, by spreading on agricultural land. "In Flanders, there`s not a lot of land and the tax on sludge disposal at landfill sites is getting higher," says Demey.

Whether in space or on Earth, waste initially enters a fermentation chamber where carefully chosen bacteria break down the solids. As this process is unable to biodegrade recalcitrant fractions, EPAS began investigating additional treatments to reduce the waste further.



The method that worked best involves using hydrogen peroxide, a reactive but harmless oxidant, to break down the resistant fraction which can then be reintroduced to the original fermentation chamber after removal of the peroxide. "The results have been quite positive," says Demey. "We`ve been able to remove 85% of the solid waste and convert it into water and methane gas, which can be used to generate electricity. We`ve tested the method on sludge waste from a Flemish food company. The only obstacle is that the cost is higher than that of current disposal methods, but this will change in future".

Flammable methane may be a desirable end product on Earth, but in space it could be a disaster. "By adapting the process conditions, we can slow down the fermentation process and stop it before methane is produced, " says Christophe Lasseur, MELISSA project manager at ESTEC, ESA`s technical centre in the Netherlands. This could involve maintaining a high ammonium (urea) concentration, high acidity, or by washing methane-producing bacteria out of the fermentation chamber.

During fermentation, long organic (carbon-based) molecules are gradually broken down until ultimately carbon dioxide and methane, molecules containing just one carbon atom, are produced. "In the MELISSA system, we stop when the long molecules have broken down into fatty acids," says Lasseur. The fatty acids are then used to feed bacteria which also consume some of the ammonium. The remaining ammonium is fed into the third MELISSA compartment where it is converted into nitrates which are used to feed the plants that astronauts eat for dinner.



Christophe Lasseur | alphagalileo
Further information:
http://www.esa.int

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>