Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Present-day species of piranhas result from a marine incursion into the Amazon Basin

04.12.2007
The factors that lead to the appearance of new species are still insufficiently understood for a great many animals. However, it is easier to trace back the evolutionary history of those whose biogeographical distribution is well known.

This is the case for piranhas for which the whole range of species is endemic to South America. Combining the results of phylogenetic analysis, elaborated using mitochondrial DNA of piranhas, with existing data about successive geological upheavals that affected ecosystems in the course of the past 15 million years, a research team involving IRD scientists (1) has acquired a better understanding of the evolutionary history of this sub-family of fish.

About 4 million years B.P., rise in sea level appears to have brought about the isolation of small populations of piranhas in the upper reaches of the great rivers. This situation favoured speciation and hence the formation of the present species. Such populations would then have descended to colonize the lowland waters of these rivers following the regression of the Atlantic Ocean. This hypothesis for colonization and diversification comes in opposition to the hitherto prevailing theory and moreover suggests a younger age for current species of piranhas than previously thought.

Piranhas inhabit exclusively the fresh waters of South America. Their geographical distribution extends from the Orinoco River basin (Venezuela) to the North, down to that of the Paraná (Argentina) to the South. Over this whole area, which also embraces the entire Amazon Basin, biologists have recorded 28 carnivorous species of these fish (2). In spite of the evolutionary success of this subfamily of fish, the mechanisms that generated the species richness of this group are still insufficiently known. A team from the IRD, working in partnership with Bolivian and Peruvian scientists, aimed to establish how these species were able to evolve over the past 15 million years. They consequently took samples from around their whole distribution range. Between September 2002 and June 2003, numerous specimens of piranhas were collected from the Bolivian part of the Amazon. Complementary sampling was then conducted in the Brazilian and Peruvian sectors, from the Orinoco in Venezuela, and the São Francisco and the Paraná-Paraguay in Brazil. The team selected 57 specimens representative of 21 different species of piranhas, from 15 collection points distributed over the whole South-American hydrographic network.

Mitochondrial DNA (mtDNA) of piranhas has a particularly high mutation rate and thus could be used as a molecular basis for reconstructing the evolution of the present-day species which are different yet very close to one another. These techniques using mtDNA sequences led to the conclusion that the origin of the piranha species inhabiting the rivers of South America today dates back to some ancestor at only a few million years B.P. Yet dating from fossils, whose morphologies are strikingly similar to those of present-day piranhas, strongly suggests that this fish subfamily already existed in South America’s hydrographic system 25 million years ago. The modern species must therefore stem from a recent diversification.

Further investigation involving the construction of a phylogenetic tree by categorizing the study’s 21 species allowed phylogenetic relationships between each of them to be established in order to test alternative hypotheses for the diversification that occurred over time. Examination of these data alongside geological-scale changes that have affected aquatic ecosystems with time brought out evidence that marine incursions played a fundamental role in the appearance then the distribution of piranha species.

Five million years ago, the Atlantic Ocean advanced, its waters finding their way far onto the Amazon flood plain. The saline water invaded the lowland expanse of the great river and penetrated its tributaries situated below 100 metres of altitude, provoking the disappearance of many species of freshwater fish. Some of these would nevertheless have succeeded in finding refuge at high altitude, in particular in rivers that flowed on the Guianan and Brazilian shields.

DNA analysis confirmed this hypothesis and showed that the piranha populations present in the Amazon flood plain but situated 100 metres above sea-level have been in existence for no more than 3 million years. Hitherto, certain specialists had suggested that the present-day piranha species had arisen in the lower sections of the great rivers of South America. The scientists thought that from centres of speciation, piranhas would subsequently have dispersed to colonize the more upstream reaches of the river system. However, the results of the study give sustenance to another scenario.

According to that new hypothesis, during the marine incursion phase some piranha populations would have survived in the upstream parts of the network. Such populations would have differentiated into species–following the fragmentation of their zone of distribution, but probably also in response to ecological constraints specific to the basin where they were kept in isolation from each other. Once the ocean had regressed again, 3 million years ago, these piranhas could finally have dispersed downstream, finding their way back to the Amazon’s lowland plain which would have served as a gathering ground for biodiversity.

What now remains to be found are the ecological parameters that could have favoured the diversification of piranha populations so confined to the upper reaches of the river network. One of the hypotheses advanced highlights water quality as a factor in stimulating ecological and morphological differentiation of species. The field survey observations indicated that some of the species were highly localized, in both geographical and ecological terms. For example, Serrasalmus hollandi is mostly found in turbid, sediment-laden waters flowing down from Andean mountain streams. In contrast, a new species the biologists discovered, lives in the same hydrographic basin but only in rivers with crystal-clear waters bearing very little sediment content. However, water quality cannot be considered as the sole factor behind speciation, seeing that a third piranha species was found living in either of these two categories of river.

The research results as a whole suggest that the superimposition of factors linked to geographical history and ecological conditions, intervening at different spatial and temporal scales, is responsible for the diversification of the piranhas. This is an evolutionary progression which should be transposable to other fish communities inhabiting South American waters.

Grégory Fléchet - DIC

(1) These investigations were conducted jointly with Institute of Molecular Biology and Biotechnology, University Mayor San Andrés, La Paz (UMSA - Bolivia), the Institute of Research on the Peruvian Amazon (IIAP - Peru) and the Laboratoire Génome, Populations, Interactions, Adaptation (GPIA) in Montpellier.

(2) Herbivore piranhas also exist. In 2003, IRD scientists described new impressively sized species caught in French Guiana. (See scientific bulletin n° 168)

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2007/fas279.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>