Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Data Analysis Conclusive About Release Of CO2 From Peatland When Natural Swamp Forest Is Converted To Oil Palm Plantation

04.12.2007
Tropical peatlands turn up the heat for the bali cop!

A new data analysis undertaken by Dr. Susan Page of the University of Leicester Department of Geography and colleagues involved in the EU-funded CARBOPEAT and RESTORPEAT projects shows conclusively that large amounts of carbon dioxide are released from peatland in Southeast Asia when it is converted from natural swamp forest to plantations of oil palm or pulpwood trees.

This supports the findings of a recent Greenpeace report on the impact of growing oil palm on tropical peatlands and a feature article on palm oil and pulpwood plantations in this week’s New Scientist.

According to Professor Jack Rieley of the School of Geography, University of Nottingham these new life cycle analysis calculations show that all forms of land use change on tropical peatland lead to massive losses of carbon from the peat store and the transfer of large amounts of CO2e to the atmosphere contributing to climate change processes. The worst land use scenario is degraded peatland. This is peatland that has been deforested and drained but is not currently managed; these degraded peatlands are susceptible to fire in every dry season which leads to large carbon emissions. Plantations of oil palm and acacia trees grown for pulpwood, however, also lose large amounts of carbon (see table) owing to rapid decomposition of the peat carbon store as a result of oxidation caused by deep land drainage.

Natural peat swamp forest acts as a carbon sink accumulating at least 2.6 t ha-1 CO2e yr-1 as a consequence of tree growth and peat accumulation. Peatland under plantation agriculture and degraded peatland are both major carbon sources with oil palm and pulpwood plantations emitting CO2 e in the order of 170 and 280 t ha-1 yr-1, respectively, equivalent to 1,000 and 1,900 t ha-1 yr-1 over the 25 year life cycle.

Since the areas occupied by oil palm plantations on peatland in Malaysia and Indonesia are huge, in the order of 420,000 hectares for the former and 2,800,000 ha for the latter, the combined 25 year life cycle CO2e emissions are enormous and in the region of 3,220 Mt CO2e.

According to Professor Florian Siegert of Ludwig-Maximilians-University, Munich, Germany, who is studying land cover change in Southeast Asia, the large increase in area of oil palm projected to take place in coming years to satisfy the biofuels market will release much more CO2 emissions than the fossil fuel it is supposed to replace (up to 30 times more depending upon management of individual plantations). The emissions associated with palm oil plantations growing on thick tropical peat are particularly massive. In Indonesia it is estimated that producing 1 tonne of palm oil on peatland will cause emissions of between 15 and 70 tonnes of CO2 over the life cycle of 25 years as a result of forest conversion, peat decomposition and emission from fires associated with land clearance. The range of emission values is so large because oil palm fruit harvest can be much lower on nutrient poor and poorly drained peat soils. Peat swamp forests are the only major land area not yet developed in Southeast Asia, but increased demand for palm oil and pulp for paper is already leading to accelerated conversion of peat swamp forests into plantations.

This new assessment of the impact of plantations on CO2e emissions from tropical peatland is very important, especially in view of the upcoming UNFCCC climate change conference that will be held in Bali, Indonesia from this week (4-14 December). Delegates to the Bali COP will discuss proposals to improve international requirements for reduced greenhouse gas (GHG) emissions under the Kyoto Protocol. Up until quite recently most attention was focused on GHG emissions from industry and the burning of fossils fuels. There is now an enhanced emphasis on emissions from non-industrial sources, such as deforestation, agricultural practices and, in the case of Southeast Asia, peat swamp reclamation. Various mechanisms to reduce emissions from deforestation have been proposed to UNFCCC and will be discussed during the Bali meeting.

Dr Susan Page said: “Current land use and land practise developments in Southeast Asia give grave cause for concern. While deforestation rates in non-peatland areas are decreasing slightly owing to depletion of forest resources, those on peatlands have been rising for the last 20 years. In 2005, 25% of all deforestation in Southeast Asia was on peatlands owing to demand for land on which to establish plantations. Current UNFCCC negotiations in Bali on reduced emissions from deforestation and degradation (REDD) could offer a crucial opportunity to reduce carbon emissions from tropical peatlands and thus contribute to combating global climate change.”

Time for action: Dr Page went on to say that “The Government of Indonesia should regard its peatlands as a ‘bank’ because they are worth more as biodiversity and carbon stores than oil palm or pulp tree plantations. As a first step it should rescind ALL concession licenses that have been (and still are being) granted for new plantations on its peatland, especially those granted by the decentralized local governments without carrying out Environmental Impact Assessments. It is clear with current rates of peatland conversion that the Indonesian Government cannot reduce its massive non-industrial CO2 emissions unless it stops plantation and other agricultural and industrial uses of its peatlands, and takes serious measures to protect the natural resource functions of biodiversity, carbon and water stores of the remaining peat swamp forests”.

Ather Mirza | alfa
Further information:
http://www.carbopeat.org
http://www.le.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>