Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental researchers propose radical 'human-centric' map of the world

29.11.2007
Ecologists pay too much attention to increasingly rare "pristine" ecosystems while ignoring the overwhelming influence of humans on the environment, say researchers from McGill University and the University of Maryland, Baltimore County (UMBC).

Prof. Erle Ellis of UMBC and Prof. Navin Ramankutty of McGill assert that the current system of classifying ecosystems into biomes (or "ecological communities") like tropical rainforests, grasslands and deserts may be misleading. Instead, they propose an entirely new model of human-centered "anthropegenic" biomes in the November 19 issue of the journal Frontiers in Ecology and the Environment.

"Ecologists go to remote parts of the planet to study pristine ecosystems, but no one studies it in their back yard," said Ramankutty, assistant professor in McGill's Department of Geography and the Earth System Science Program. "It's time to start putting instrumentation in our back yards – both literal and metaphorical – to study what's going on there in terms of ecosystem functioning."

Existing biome classification systems are based on natural-world factors such as plant structures, leaf types, plant spacing and climate. The Bailey System, developed in the 1970's, divides North America into four climate-based biomes: polar, humid temperate, dry and humid tropical. The World Wildlife Fund (WWF) ecological land classification system identifies 14 major biomes, including tundra, boreal forests, temperate coniferous forests and deserts and xeric shrublands. For their part, Ellis and Ramankutty propose a radically new system of anthropogenic biomes – dubbed "anthromes" – which includes residential rangelands, dense settlements, villages and croplands.

"Over the last million years, we have had glacial-interglacial cycles, with enormous changes in climate and massive shifts in ecosystems," said Ramankutty. "The human influence on the planet today is almost on the same scale. Nearly 30 to 40% of the world's land surface today is used just for growing food and grazing animals to serve the human population."

The researchers argue human land-use practices have fundamentally altered the planet. "Our analysis was quite surprising," said Ramankutty. "Only about 20% of the world's ice-free land-surface is pristine. The rest has some kind of anthropogenic influence, so if you're studying a pristine landscape, you're really only studying about 20% of the world."

"If you want to think about going into a sustainable future and restoring ecosystems, we have to accept that humans are here to stay. Humans are part of the package, and any restoration has to include human activities in it."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>