Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Debate Wisdom of Plan to Save Venice From Flooding

10.05.2002


The Italian government recently decided to move forward with planning for the construction of underwater, mobile floodgates to mitigate flooding in Venice, situated on islands in a lagoon in the Adriatic Sea. The soundness of the plan is discussed by several scientists in the May 14 issue of Eos, published by the American Geophysical Union.



The approved plan to protect Venice, called MOSE (Modulo Sperimentale Elettromeccanico, or Experimental Electromechanical Module), involves the construction of 79 gates at three lagoon inlets. When waters rise 1.1 meters [43 inches] above "normal," air will be injected into the hollow gates, causing them to rise, blocking seawater from entering the lagoon and thereby preventing the flooding of Venice. The floodgates will take approximately eight years and $2.6 billion to construct.

Some critics of MOSE, such as Paolo Antonio Pirazzoli of the French Centre National de la Recherche Scientifique (CNRS), are skeptical as to whether the gates will actually prevent flooding. In his Eos article, Pirazzoli states that the design of the gates is based on outdated predictions of sea-level change, utilizing a scenario that differs by nearly 0.26 meters [10 inches] from recent estimates of rise in sea level over the next century, made by the Intergovernmental Panel on Climate Change (IPCC). Pirazzoli also
asserts that the MOSE designers did not consider sea-level rise associated with land subsidence or increased water levels associated with extended rainy or windy periods.



Pirazzoli argues that once sea-level rise exceeds 0.31 meters [1 foot], possibly within the next 100 years, MOSE will become obsolete and will need to be replaced with watertight gates. Therefore, Pirazzoli contends, the Italian government should follow "soft" techniques, such as raising street level elevations, and await further assessment of sea-level rise to find "an updated, wise solution, more able to cope with foreseeable sea-level change."

In the same issue of Eos, MOSE supporters Rafael L. Bras, Donald R.F. Harleman, and Paola Rizzoli of the Massachusetts Institute of Technology, comment on Pirazzoli`s view. The writers, who worked on the design and assessment of MOSE, state that the gates will indeed be effective barriers to flooding. They note that the sea-level rise scenario they utilized was based on recent research and that the floodgates are designed to prevent flooding in the event of a 0.3 to 0.5-meter [12 to 20 inch] rise in sea level. Furthermore, they say, it is not necessary to consider further land subsidence, because it was the result of groundwater removal that was ended in the 1970s, and it has not been a problem since then.

Bras and his colleagues note that as flooding occurs with greater frequency, steps will have to be taken to protect the city, and the cost of doing nothing may be greater than the cost of constructing the MOSE gates. They believe that, "the barriers, as designed, separate the lagoon from the sea in an effective, efficient and flexible way, considering present and foreseeable scenarios." With regard to Pirazzoli`s contention that the mobile floodgates would eventually have to be replaced with watertight gates, they respond that if water levels continue to rise, the gates would just remain closed more often, in effect serving as "permanent" barriers.

Environmentalists argue, however, that keeping the gates closed for increasingly longer periods of time could be detrimental to the lagoon`s ecosystem, which relies on exchange of waters between the lagoon and the Adriatic Sea to flush pollutants from the lagoon. Without this cleansing flow, they say, toxic substances may build up in lagoon waters, damaging its delicate ecosystem.

In order to understand how frequent closing of the gates would impact the lagoon`s ecosystem, it is necessary to understand water flow patterns and exchange rates through the lagoon inlets. Miroslav Gacic and colleagues have taken preliminary steps in addressing these issues. Their research, published in the same edition of Eos, is based on a series of ship-borne surveys of water flowing through the inlet over an approximately forty-five day period.

Although the results are preliminary, the authors conclude that flow through the inlets is controlled primarily by tides. They also determine that the lagoon waters have an exchange rate of about one day, meaning that the lagoon is well-ventilated and quickly flushed. The researchers note that better assessments will be made when data representing several seasons become available.

Harvey Leifert | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>