Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Debate Wisdom of Plan to Save Venice From Flooding

10.05.2002


The Italian government recently decided to move forward with planning for the construction of underwater, mobile floodgates to mitigate flooding in Venice, situated on islands in a lagoon in the Adriatic Sea. The soundness of the plan is discussed by several scientists in the May 14 issue of Eos, published by the American Geophysical Union.



The approved plan to protect Venice, called MOSE (Modulo Sperimentale Elettromeccanico, or Experimental Electromechanical Module), involves the construction of 79 gates at three lagoon inlets. When waters rise 1.1 meters [43 inches] above "normal," air will be injected into the hollow gates, causing them to rise, blocking seawater from entering the lagoon and thereby preventing the flooding of Venice. The floodgates will take approximately eight years and $2.6 billion to construct.

Some critics of MOSE, such as Paolo Antonio Pirazzoli of the French Centre National de la Recherche Scientifique (CNRS), are skeptical as to whether the gates will actually prevent flooding. In his Eos article, Pirazzoli states that the design of the gates is based on outdated predictions of sea-level change, utilizing a scenario that differs by nearly 0.26 meters [10 inches] from recent estimates of rise in sea level over the next century, made by the Intergovernmental Panel on Climate Change (IPCC). Pirazzoli also
asserts that the MOSE designers did not consider sea-level rise associated with land subsidence or increased water levels associated with extended rainy or windy periods.



Pirazzoli argues that once sea-level rise exceeds 0.31 meters [1 foot], possibly within the next 100 years, MOSE will become obsolete and will need to be replaced with watertight gates. Therefore, Pirazzoli contends, the Italian government should follow "soft" techniques, such as raising street level elevations, and await further assessment of sea-level rise to find "an updated, wise solution, more able to cope with foreseeable sea-level change."

In the same issue of Eos, MOSE supporters Rafael L. Bras, Donald R.F. Harleman, and Paola Rizzoli of the Massachusetts Institute of Technology, comment on Pirazzoli`s view. The writers, who worked on the design and assessment of MOSE, state that the gates will indeed be effective barriers to flooding. They note that the sea-level rise scenario they utilized was based on recent research and that the floodgates are designed to prevent flooding in the event of a 0.3 to 0.5-meter [12 to 20 inch] rise in sea level. Furthermore, they say, it is not necessary to consider further land subsidence, because it was the result of groundwater removal that was ended in the 1970s, and it has not been a problem since then.

Bras and his colleagues note that as flooding occurs with greater frequency, steps will have to be taken to protect the city, and the cost of doing nothing may be greater than the cost of constructing the MOSE gates. They believe that, "the barriers, as designed, separate the lagoon from the sea in an effective, efficient and flexible way, considering present and foreseeable scenarios." With regard to Pirazzoli`s contention that the mobile floodgates would eventually have to be replaced with watertight gates, they respond that if water levels continue to rise, the gates would just remain closed more often, in effect serving as "permanent" barriers.

Environmentalists argue, however, that keeping the gates closed for increasingly longer periods of time could be detrimental to the lagoon`s ecosystem, which relies on exchange of waters between the lagoon and the Adriatic Sea to flush pollutants from the lagoon. Without this cleansing flow, they say, toxic substances may build up in lagoon waters, damaging its delicate ecosystem.

In order to understand how frequent closing of the gates would impact the lagoon`s ecosystem, it is necessary to understand water flow patterns and exchange rates through the lagoon inlets. Miroslav Gacic and colleagues have taken preliminary steps in addressing these issues. Their research, published in the same edition of Eos, is based on a series of ship-borne surveys of water flowing through the inlet over an approximately forty-five day period.

Although the results are preliminary, the authors conclude that flow through the inlets is controlled primarily by tides. They also determine that the lagoon waters have an exchange rate of about one day, meaning that the lagoon is well-ventilated and quickly flushed. The researchers note that better assessments will be made when data representing several seasons become available.

Harvey Leifert | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>