Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pine Is Ten Times As Sensitive As Maple

08.05.2002


Coniferous trees are widespread in Russia, especially in Siberia, where taiga extends over tens of millions of hectares. Cedars and pines grow also in the environs of cities and in city parks and suffer from human-induced changes in environment.



Of course, coniferous trees can withstand a low-level pollution. Acid gases or soil pollutants that trees absorb are actively transported and deposited in those parts of wood, which do not perform important functions, and some elements are removed with needles and root exudates. Trees are armed with several biochemical reactions preventing harmful oxidation processes. According to the data obtained in the Main Botanical Garden in Moscow, the ability of pine species to withstand the human-induced pollution decreases in the following range. Common pine (Pinus silvestris) is most sustainable; mountain pine (Pinus montana) and North American species - Labrador pine (Pinus banksiana) and Weymouth pine (Pinus strobus) - are less sustainable; cembra pine (Pinus cembra), Siberian cedar (Pinus sibirica), dwarf pine (Pinus pumila), and Korean pine (Pinus koraiensis) are most vulnerable.

Conifers are ten times as sensitive to the air pollution as foliage trees. Because of such a susceptibility to ecological changes, conifers are good objects for the biological monitoring of the environment. This method allows one to assess a combined impact of all toxic substances on live organisms. This is very advantageous in urban conditions, since the heterogeneity of the city climate, soil cover, topography, and other factors make it difficult to determine the degree of pollution and the level of toxicity of various substances in certain points within the town area. Such an assessment could not be based, e.g., only on the chemical analysis of gaseous pollutants, because the latter cannot characterize the transformation and migration of gases in different layers of the atmosphere. In this situation, the observation on plants that suffer from these gases is a better way of ecological control.


Pines from 20 to 25 years old growing in town Tomsk, in areas polluted to different degrees, were observed by research assistants from the Tomsk State University. They discovered that urban conditions cause structural defects and changes in main physiological and growth processes in coniferous trees. The photosynthesis efficiency is decreased by 25-30%, observed trees grow slower than similar conifers in the suburbs and have a distorted (split) upper part of the crown and a low-quality wood.
On the basis of assessing the state of coniferous trees in the area of the Baikal Lake, Dr. Mikhailova, the research assistant from the Siberian Institute of Plant Physiology and Biochemistry of the Russian Academy of Sciences, classified the state of conifers depending on the environmental conditions, in particular, on the air pollution by industrial gases. The pollution-induced sickness of trees develops in several stages. First, a small, but visible metabolic disorder appears. At a medium-level pollution, the disorder grows into a persistent chronic disease, the adaptive mechanisms do not work properly, and the tree growth is retarded. As pressing becomes stronger, the tree enters the phase of an irreversible degradation. And at the last stage, the tree slowly dies.

Plants are very vulnerable to high concentrations of atmospheric ozone. The study of the ozone influence on trees is hardly possible in natural conditions because of a high reactivity and a wide spectrum of impacts of this agent. In laboratory, special equipment allows to monitor the ozone concentration during the experiment. Scientists from the Institute of Atmospheric Optics (Siberian Division, Russian Academy of Sciences), the Tomsk State University, and the Institute of Forestry (Siberian Division, Russian Academy of Sciences) found that six-hour-long exposure of four-year-old Siberian cedars to an atmosphere with an increased ozone concentration (8 mg/m3) results in the decomposition of photosynthetic pigments. This effect is better expressed in the needles of rapidly growing cedars. Needles of slowly growing plant individuals are less sensitive to the stress. However, a low rate of growth is disadvantageous from the viewpoint of park designers.

To sum up, we may say that urban conditions are too difficult for pines and cedars. Their right place is taiga with a clean air that is never present in a large city. That is why pines, which are planted now by many people on lawns in front of their houses, get sick and die when very young.

Natalia Reznik | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>