Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Leeds researchers fuelling the ‘hydrogen economy’

Scientists at the University of Leeds are turning low-grade sludge into high-value gas in a process which could make eco-friendly biodiesel even greener and more economical to produce.

Biodiesel – motor fuel derived from vegetable oil - is a renewable alternative to rapidly depleting fossil fuels. It is biodegradable and non-toxic, and production is on the up. But for each molecule of biodiesel produced, another of low-value crude glycerol is generated, and its disposal presents a growing economic and environmental problem.

Now researchers Leeds have shown how glycerol can be converted to produce a hydrogen rich gas. Hydrogen is in great demand for use in fertilisers, chemical plants and food production.

Moreover, hydrogen is itself viewed as a future ‘clean’ replacement for hydrocarbon-based transport fuels, and most countries currently reliant on these fuels are investing heavily in hydrogen development programmes.

The novel process developed by Dr Valerie Dupont and her co-investigators in the University's Faculty of Engineering mixes glycerol with steam at a controlled temperature and pressure, separating the waste product into hydrogen, water and carbon dioxide, with no residues. A special absorbent material filters out the carbon dioxide, which leaves a much purer product.

“Hydrogen has been identified as a key future fuel for low carbon energy systems such as power generation in fuel cells and as a transport fuel. Current production methods are expensive and unsustainable, using either increasingly scarce fossil fuel sources such as natural gas, or other less efficient methods such as water electrolysis.”

“Our process is a clean, renewable alternative to conventional methods. It produces something with high value from a low grade by-product for which there are few economical upgrading mechanisms” says Dr Dupont. “In addition, it’s a near ‘carbon-neutral’ process, since the CO2 generated is not derived from the use of fossil fuels.”

Dr Dupont believes the process is easily scalable to industrial production, and, as the race towards the ‘hydrogen economy’(1) accelerates, could potentially be an economically important, sustainable – and environmentally friendly – way of meeting the growing demand for hydrogen.

Dr Dupont’s research has been funded with a £270k grant from the Engineering and Physical Sciences Research Council (EPSRC) under the Energy programme, and is in collaboration with Professors Yulong Ding and Mojtaba Ghadiri from the Institute of Particle Science and Engineering, and Professor Paul Williams from the Energy and Resources Research Institute at the University. Industrial collaborators are Johnson Matthey and D1-Oils.

Clare Elsley | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>