Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mathematical model developed at the School of Computing is forecasting air quality across a number of European cities

26.11.2007
Led by Dr. Roberto San José, the Environmental Software and Modelling Group (GMSMA) at the Universidad Politécnica de Madrid’s School of Computing, has developed an advanced modelling system to forecast air quality, called OPANA. OPANA is now operating across a number of European cities.

Founded in 1992, the GMSMA has built a complex air quality simulation system that is at the leading edge in meteorology, environmental physics and chemistry. The system is now in use and is forecasting air quality in the cities where the model has been deployed. After forecasting (it usually takes the system a day to make a 72-hour forecast), OPANA transmits this information through the latest communication systems (GPRS, WAP…) to street-level information panels or to the Internet.

The system outputs an air quality indicator based on five urban pollutants: sulphur dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM10), ozone (O3) and carbon monoxide (CO). Air quality in the area under observation is defined by the worst of the partial indicators of each pollutant, which is known as the global air quality indicator. The indicator values range from 0 to >150, and the higher the indicator is the worse the air quality is. The indicator value 0 is equivalent to a zero concentration of pollutant, whereas the value 100 represents the pre-established limit as of which the population should be warned of the potential risks.

A region’s air quality is influenced by the geographical distribution of emission sources, the quantity of emitted pollutants and the physical and chemical processes taking place in the atmosphere. The climatology and terrain influence the dispersion and transportation processes.

The forecasting system developed by the GMSMA takes into account all these variables. The system comprises an emissions model, a meteorological model, a transportation model, a photochemical model and a deposition model.

Measuring stations

Air quality is measured directly at stations located in different parts of the cities, but this information is confined to the space around the station. After calibration with the measuring stations, the models can produce maps and information about the whole region.

The emissions model (MM5-CMAQ-EMIMO) used by the GMSMA, which is OPANA’s mainstay, covers anthropogenic emissions from traffic, industry, households and the services sector with a spatial resolution of 1 km and a time resolution of 1 hour, respectively. It also accounts for biogenic emissions (primarily isoprenes and monoterpenes) from trees and vegetation.

The goal of the forecasting system is to provide users and environmental authorities with 24- to 72-hour air quality forecasts that can be drawn on to then take steps, in line with specially designed models, to reduce emissions and comply with the limits set out in European Air Quality Directives.

This is a complex process, as, in the case of ozone for example, a reduction in NOx emissions could lead to a significant increase in ozone levels in some parts of the city and its surroundings on the next day.

Urban applications

Originally applied in the cities of Madrid, Leicester and Bilbao, it has now been deployed in other cities, like Las Palmas de Gran Canaria in the Canary Islands, as well as in Asturias and Andalusia.

A data collection algorithm gathers information for the forecasts from ground emission stations (first 24 hours). This algorithm automates the processing of the observed information for use in the forecasts and has led to a statistically significant improvement in the results.

OPANA is a real-time air quality forecasting tool. OPANA offers mesoscale domains, is easy to configure and is flexible enough to accept additional information to improve the forecasting system. However, the tool can only be operated by experts, and, in almost all applications, the service is provided over the Internet. The GMSMA is responsible for routine system operation.

Environmental impact studies and industrial forecasts

Apart from air quality forecasting, the model also has the potential to conduct environmental impact studies. OPANA has been used to run environmental impact studies on the Txingudi and San Sebastián incinerators, as well as power stations for Unión Fenosa, Endesa, Cepsa, EHL, Electrabel and others. The system is also capable of forecasting the impact of industrial plants, like the ACECA power station and Portland Valderrivas cement works, on air quality.

Eduardo Martínez | alfa
Further information:
http://artico.lma.fi.upm.es/
http://www.fi.upm.es/?pagina=558

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>