Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mathematical model developed at the School of Computing is forecasting air quality across a number of European cities

26.11.2007
Led by Dr. Roberto San José, the Environmental Software and Modelling Group (GMSMA) at the Universidad Politécnica de Madrid’s School of Computing, has developed an advanced modelling system to forecast air quality, called OPANA. OPANA is now operating across a number of European cities.

Founded in 1992, the GMSMA has built a complex air quality simulation system that is at the leading edge in meteorology, environmental physics and chemistry. The system is now in use and is forecasting air quality in the cities where the model has been deployed. After forecasting (it usually takes the system a day to make a 72-hour forecast), OPANA transmits this information through the latest communication systems (GPRS, WAP…) to street-level information panels or to the Internet.

The system outputs an air quality indicator based on five urban pollutants: sulphur dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM10), ozone (O3) and carbon monoxide (CO). Air quality in the area under observation is defined by the worst of the partial indicators of each pollutant, which is known as the global air quality indicator. The indicator values range from 0 to >150, and the higher the indicator is the worse the air quality is. The indicator value 0 is equivalent to a zero concentration of pollutant, whereas the value 100 represents the pre-established limit as of which the population should be warned of the potential risks.

A region’s air quality is influenced by the geographical distribution of emission sources, the quantity of emitted pollutants and the physical and chemical processes taking place in the atmosphere. The climatology and terrain influence the dispersion and transportation processes.

The forecasting system developed by the GMSMA takes into account all these variables. The system comprises an emissions model, a meteorological model, a transportation model, a photochemical model and a deposition model.

Measuring stations

Air quality is measured directly at stations located in different parts of the cities, but this information is confined to the space around the station. After calibration with the measuring stations, the models can produce maps and information about the whole region.

The emissions model (MM5-CMAQ-EMIMO) used by the GMSMA, which is OPANA’s mainstay, covers anthropogenic emissions from traffic, industry, households and the services sector with a spatial resolution of 1 km and a time resolution of 1 hour, respectively. It also accounts for biogenic emissions (primarily isoprenes and monoterpenes) from trees and vegetation.

The goal of the forecasting system is to provide users and environmental authorities with 24- to 72-hour air quality forecasts that can be drawn on to then take steps, in line with specially designed models, to reduce emissions and comply with the limits set out in European Air Quality Directives.

This is a complex process, as, in the case of ozone for example, a reduction in NOx emissions could lead to a significant increase in ozone levels in some parts of the city and its surroundings on the next day.

Urban applications

Originally applied in the cities of Madrid, Leicester and Bilbao, it has now been deployed in other cities, like Las Palmas de Gran Canaria in the Canary Islands, as well as in Asturias and Andalusia.

A data collection algorithm gathers information for the forecasts from ground emission stations (first 24 hours). This algorithm automates the processing of the observed information for use in the forecasts and has led to a statistically significant improvement in the results.

OPANA is a real-time air quality forecasting tool. OPANA offers mesoscale domains, is easy to configure and is flexible enough to accept additional information to improve the forecasting system. However, the tool can only be operated by experts, and, in almost all applications, the service is provided over the Internet. The GMSMA is responsible for routine system operation.

Environmental impact studies and industrial forecasts

Apart from air quality forecasting, the model also has the potential to conduct environmental impact studies. OPANA has been used to run environmental impact studies on the Txingudi and San Sebastián incinerators, as well as power stations for Unión Fenosa, Endesa, Cepsa, EHL, Electrabel and others. The system is also capable of forecasting the impact of industrial plants, like the ACECA power station and Portland Valderrivas cement works, on air quality.

Eduardo Martínez | alfa
Further information:
http://artico.lma.fi.upm.es/
http://www.fi.upm.es/?pagina=558

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>