Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planting carbon deep in the earth – rather than the greenhouse

26.11.2007
Storing carbon dioxide deep below the earth’s surface could be a safe, long-term solution to one of the planet’s major contributors to climate change.

University of Leeds research shows that porous sandstone, drained of oil by the energy giants, could provide a safe reservoir for carbon dioxide. The study found that sandstone reacts with injected fluids more quickly than had been predicted - such reactions are essential if the captured CO2 is not to leak back to the surface.

The study looked at data from the Miller oilfield in the North Sea, where BP had been pumping seawater into the oil reservoir to enhance the flow of oil. As oil was extracted, the water that was pumped out with it was analysed and this showed that minerals had grown and dissolved as the water travelled through the field. (1)

Significantly, PhD student Stephanie Houston found that water pumped out with the oil was especially rich in silica. This showed that silicates, usually thought of as very slow to react, had dissolved in the newly-injected seawater over less than a year. This is the type of reaction that would be needed to make carbon dioxide stable in the pore waters, rather like the dissolved carbonate found in still mineral water. (2)

The study gives a clear indication that carbon dioxide sequestered deep underground could also react quickly with ordinary rocks to become assimilated into the deep formation water.

The work was supervised by Bruce Yardley, Professor in the School of Earth and Environment at the University, who explained: “If CO2 is injected underground we hope that it will react with the water and minerals there in order to be stabilized. That way it spreads into its local environment rather than remaining as a giant gas bubble which might ultimately seep to the surface.

“It had been thought that reaction might take place over hundreds or thousands of years, but there’s a clear implication in this study that if we inject carbon dioxide into rocks, these reactions will happen quite quickly making it far less likely to escape.”

Although extracting CO2 from power stations and storing it underground has been suggested as a long-term measure for tackling climate change, it has not yet been put to work for this purpose on a large scale. “There is one storage project in place at Sleipner, in the Norwegian sector of the North Sea, and some oil companies have actually used CO2 sequestration as a means of pushing out more oil from existing oilfields,” said Prof Yardley.

In the UK the Prime Minister has recently announced a major expansion of energy from renewable sources and the launch of a competition to build one of the world's first carbon capture and storage plants. (3) The Leeds study suggests the technique has long-term potential for safely storing this major by-product of our power stations, rather than allowing it to escape and further contribute to global warming.

Footnotes

(1) The study covered samples of water pumped out from the Miller oilfield over a seven-year period. The data is routinely collected by BP to assess whether water-borne chemicals are liable to cause costly problems of scale to the drilling equipment. The Leeds scientists compared these with the composition of the water that was there before and the water that was injected. This showed that minerals had grown and dissolved as the water travelled through the field.

(2) Stephanie Houston worked on the project as part of an Industrial Case Studentship, funded by the Natural Environment Research Council and BP. Her work was supervised by Professor Bruce Yardley, who is based in the Institute of Geological Sciences within the School of Earth and Environment at the University of Leeds.

(3) www.gnn.gov.uk/environment/fullDetail.asp?ReleaseID=331669&NewsAreaID=2

Vanessa Bridge | alfa
Further information:
http://www.nerc.ac.uk
http://www.see.leeds.ac.uk/index.htm

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>