Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planting carbon deep in the earth – rather than the greenhouse

26.11.2007
Storing carbon dioxide deep below the earth’s surface could be a safe, long-term solution to one of the planet’s major contributors to climate change.

University of Leeds research shows that porous sandstone, drained of oil by the energy giants, could provide a safe reservoir for carbon dioxide. The study found that sandstone reacts with injected fluids more quickly than had been predicted - such reactions are essential if the captured CO2 is not to leak back to the surface.

The study looked at data from the Miller oilfield in the North Sea, where BP had been pumping seawater into the oil reservoir to enhance the flow of oil. As oil was extracted, the water that was pumped out with it was analysed and this showed that minerals had grown and dissolved as the water travelled through the field. (1)

Significantly, PhD student Stephanie Houston found that water pumped out with the oil was especially rich in silica. This showed that silicates, usually thought of as very slow to react, had dissolved in the newly-injected seawater over less than a year. This is the type of reaction that would be needed to make carbon dioxide stable in the pore waters, rather like the dissolved carbonate found in still mineral water. (2)

The study gives a clear indication that carbon dioxide sequestered deep underground could also react quickly with ordinary rocks to become assimilated into the deep formation water.

The work was supervised by Bruce Yardley, Professor in the School of Earth and Environment at the University, who explained: “If CO2 is injected underground we hope that it will react with the water and minerals there in order to be stabilized. That way it spreads into its local environment rather than remaining as a giant gas bubble which might ultimately seep to the surface.

“It had been thought that reaction might take place over hundreds or thousands of years, but there’s a clear implication in this study that if we inject carbon dioxide into rocks, these reactions will happen quite quickly making it far less likely to escape.”

Although extracting CO2 from power stations and storing it underground has been suggested as a long-term measure for tackling climate change, it has not yet been put to work for this purpose on a large scale. “There is one storage project in place at Sleipner, in the Norwegian sector of the North Sea, and some oil companies have actually used CO2 sequestration as a means of pushing out more oil from existing oilfields,” said Prof Yardley.

In the UK the Prime Minister has recently announced a major expansion of energy from renewable sources and the launch of a competition to build one of the world's first carbon capture and storage plants. (3) The Leeds study suggests the technique has long-term potential for safely storing this major by-product of our power stations, rather than allowing it to escape and further contribute to global warming.

Footnotes

(1) The study covered samples of water pumped out from the Miller oilfield over a seven-year period. The data is routinely collected by BP to assess whether water-borne chemicals are liable to cause costly problems of scale to the drilling equipment. The Leeds scientists compared these with the composition of the water that was there before and the water that was injected. This showed that minerals had grown and dissolved as the water travelled through the field.

(2) Stephanie Houston worked on the project as part of an Industrial Case Studentship, funded by the Natural Environment Research Council and BP. Her work was supervised by Professor Bruce Yardley, who is based in the Institute of Geological Sciences within the School of Earth and Environment at the University of Leeds.

(3) www.gnn.gov.uk/environment/fullDetail.asp?ReleaseID=331669&NewsAreaID=2

Vanessa Bridge | alfa
Further information:
http://www.nerc.ac.uk
http://www.see.leeds.ac.uk/index.htm

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>