Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular micro-porous materials: an alternative for hydrogen storage as a substitute for diesel and oil

The protection of the environment is one of the most urgent questions in the present world. The release of pollutant gases due to the excessive consumption of fossil fuel has lead scientists to the search for new channels for energy production, with the minimum pollution.

This research work, carried out by Dr of Chemical Sciences Edilso Reguera Ruiz and a research team of the Institute of Materials and Reagents (IMRE) of the Universty of Havana is closely related to the subject. This study intended to reveal the crystalline and electronic structure of porous molecular materials based on cyanometalates and the potential of their interaction with host molecules.

The cyanometalates are structures which form when the atoms of transition metals such as Manganese (Mn), Iron (Fe), Copper (Co) and Nickel (Ni) become linked by means of cyanide bridged clusters (CN) to form three-dimensional nettings (see Figures 1 and 2). In many cases, such nettings have a porous structure.

According to Dr Reguera, “in such cases they can be considered as a prototype of porous molecular materials suitable for the separation and storage of small molecules such as Hydrogen and Light Hydrocarbons with potential applications in future energetic technologies”.

Up to that moment, the crystalline and electronic structure of the materials studied in this research work was not known in depth. The compression level of this structure presented limits to understand its features as porous materials. “Particularly, the studies relating to the particularities of its surface were almost non-existent. The studies carried out and the results reached involve an important contribution to fill this gap”.

The possible applications of this research work are connected to one of the most interesting options for the production of non-pollutant energy: That based on Hydrogen, which generates water as a residual sub-product. This new energetic technology demands several components, one of which is to find means for Hydrogen storage in a safe and profitable way. “One of the unsolved approaches, according to Dr Reguera, is to find porous moulds which retain a high hydrogen volume through physical adsorption in a condensed state nearly at room temperatures and, at the same time, they must be able to submit it, on request, with a low energetic consumption”. One of the most visible applications of this type of technology is the substitution of oil or diesel by hydrogen in goods vehicles.

In this context, porous molecular materials are a very attractive alternative as they are a lightweight storage.

Antonio Marín Ruiz | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>