Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology put into service for global water resources observations

15.11.2007
The world’s rivers, lakes, reservoirs and groundwater as well as snow fields and glaciers are the main sources of freshwater to support terrestrial life and human livelihoods.

Continuous observations are crucial to manage these water resources for the benefit of mankind and the environment and also to provide crucial forecasting services to prevent water-related disasters such as floods and droughts. These tasks are routinely undertaken by the National Hydrological Services of countries.

However, hydrological information is insufficient especially in developing countries and many areas of the world are currently not monitored for their water resources. Therefore, critical hydrological information that is necessary to manage the world’s water resources and prevent water-related disasters is inadequate especially in the developing world.

In this situation, remote-sensing techniques have demonstrated an extremely active innovation capacity in the field of continental waters during the last 20 years. They can now be used to locate water bodies and delineate river networks, to quantify and/or estimate water related variables such as precipitations, soil wetness, water levels, water storage, to monitor water balance of large river basins on time scales ranging from weeks to years, to quantify spatial parameters relevant for hydrological models and to provide real-time information for flood forecasting.

Among the most promising space missions are satellite altimetry missions, such as ESA's ERS and Envisat and NASA-CNES Topex-Poseidon, that provide surface water levels (lakes, reservoirs, rivers, wetlands and floodplains) and space gravity missions, like ESA's GOCE and NASA's GRACE, that provide estimates of the variations of terrestrial water storage (in soils, lakes, reservoirs and groundwater) in space and time. Used in conjunction with conventional observations and hydrological modelling, these observations from space also have the potential to improve significantly our understanding of hydrological processes affecting large river basins in response to climate variability and change.

An improved description of the continental part of the water cycle will be of major importance for the monitoring of water resources, for the identification of climate change impacts on the dynamics of river basins and aquatic ecosystems, for the inventory and better management of water resources available for human consumption and activities (agriculture, urbanisation, hydroelectric energy resources).

In this context, the second “Space for Hydrology” workshop, organised by ESA in collaboration with the World Meteorological Organization (WMO), was held in Geneva, from 12-14 November 2007. It follows the first workshop, held in Toulouse, France, in September 2003.

The workshop was attended by close to 100 experts from 27 countries from the science community, the developing world, hydrologists and the space agencies. The workshop aimed to assess the current stage of knowledge and activities in space-based hydrological observations undertaken by several countries through their space agencies and to exchange knowledge and know how with hydrologists and researchers.

The workshop showed the efforts undertaken to bring space technologies into service for water resources management and disaster prevention and concluded that further investments in dedicated hydrological satellite missions are necessary to improve timeliness and accuracy of space-based hydrological observations and modelling for water resource assessments and forecasting services to make them fully operational for use by the hydrological services of the world in the next few years.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM9QL53R8F_planet_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>